Boundary-Layer Meteorology

, Volume 135, Issue 1, pp 151–159 | Cite as

Intercomparison of Sensible Heat Flux from Large Aperture Scintillometer and Eddy Covariance Methods: Field Experiment over a Homogeneous Semi-arid Region

  • Dawit A. Zeweldi
  • Mekonnen Gebremichael
  • Junming Wang
  • Theodore Sammis
  • Jan Kleissl
  • David Miller
Open Access


Scintillometers are becoming increasingly popular for the validation of satellite remote sensing sensible heat-flux estimates due to the comparable spatial resolutions. However, it is important to gain confidence in the accuracy of the sensible heat-flux measurements obtained by the scintillometer. Large aperture scintillometer (LAS) and eddy-covariance (EC) measurements were collected over a homogeneous, dry and semi-arid region near Las Cruces, New Mexico, USA, where the homogeneity allowed direct comparison of the two instruments despite their differences in footprint sizes. The differences between the sensible heat-flux measured by both LAS and EC systems fall within the differences between two EC systems. We conclude that the large aperture scintillometer is a reliable system for measuring sensible heat flux in a dry semiarid region.


Eddy covariance Large aperture scintillometer Sensible heat flux West Mesa desert 


  1. Andreas EL (1989) Estimating \({C_n^2}\) over snow and sea ice from meteorological data. J Opt Soc Am 5: 481–495CrossRefGoogle Scholar
  2. Beyrich F, de Bruin HAR, Meijininger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over heterogeneous land surface. Boundary-Layer Meteorol 105: 85–97CrossRefGoogle Scholar
  3. Cain JD, Rosier PTW, Meijninger W, de Bruin HAR (2001) Spatially averaged sensible heat fluxes measured over Barley. Agric Forest Meteorol 107: 307–322CrossRefGoogle Scholar
  4. Chehbouni A, Watts C, Lagouarde JP, Kerr YH, Rodriguez JC, Santiago JMF, Dedieu G, Goodrich DC, Unkrich C (2000) Estimation of heat fluxes and momentum fluxes over complex terrain using a large aperture scintillometer. Agric Forest Meteorol 105: 215–226CrossRefGoogle Scholar
  5. de Bruin H (2002) Introduction: renaissance of scintillometry. Boundary-Layer Meteorol 105(1): 1–4CrossRefGoogle Scholar
  6. de Bruin HAR, Kohsiek W, Van den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63: 231–257CrossRefGoogle Scholar
  7. de Bruin HAR, Van den Hurk BJJM, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76: 25–40CrossRefGoogle Scholar
  8. Hill RJ (1992) Review of optical scintillation methods of measuring the refractive index spectrum, inner scale and surface fluxes. Waves Random Media 2: 179–201CrossRefGoogle Scholar
  9. Hartogensis OK, Watts CJ, Rodriguez J-C, de Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydromet 4: 915–928CrossRefGoogle Scholar
  10. Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, de Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced difference?. J Hydromet 8: 144–159CrossRefGoogle Scholar
  11. Kaimal JC, Clifford SF, Lataitis RJ (1989) Effect of finite sampling on atmospheric spectra. Boundary-Layer Meteorol 47: 337–347CrossRefGoogle Scholar
  12. Kleissl J, Gomez J, Hong S-H, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128: 133–150CrossRefGoogle Scholar
  13. Kleissl J, Watts CJ, Rodriguez JC, Naif S, Vivoni ER (2009) Scintillometer intercomparison study—continued. Boundary-Layer Meteorol 130(3): 437–443CrossRefGoogle Scholar
  14. Kleissl J, Hong S-H, Hendrickx JMH (2009) New Mexico scintillometer network: supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90(2): 207–218CrossRefGoogle Scholar
  15. Laubach J, McNaughton KG (1999) A Spectrum-independent procedure for correcting eddy fluxes measured with separated sensors. Boundary-Layer Meteorol 89: 445–467CrossRefGoogle Scholar
  16. Massman W (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric Forest Meteorol 104: 185–198CrossRefGoogle Scholar
  17. McAneny KJ, Green AE, Astill MS (1995) Large aperture scintillometery: the homogeneous Case. Agric Forest Meteorol 76: 149–162CrossRefGoogle Scholar
  18. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43: 231–245CrossRefGoogle Scholar
  19. Meijninger W, Hartogensis O, Kohsiek W, Hoedjes J, Zuurbier R, de Bruin HAR (2002) Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface: Flevoland field experiment. Boundary-Layer Meteorol 105: 63–83CrossRefGoogle Scholar
  20. Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107: 635–653CrossRefGoogle Scholar
  21. Moncrieff JB, Massheder JM, de Bruin HAR, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188(189): 589–611CrossRefGoogle Scholar
  22. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  23. Van Dijk A, Moene AF, de Bruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands, 99 ppGoogle Scholar
  24. Wang TI, Ochs GR, Clifford SF (1978) A saturation resistant optical scintillometer to measure \({C_n^2 }\) . J Opt Sco Am 69: 334–338CrossRefGoogle Scholar
  25. Wesely ML (1976) The combined effect of temperature and humidity on the refractive index. J Appl Meteorol 15: 43–49CrossRefGoogle Scholar
  26. Wilczak JM, Oncley SP, Sage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150CrossRefGoogle Scholar
  27. Wyngaard JC, Izumi Y, Collins SA Jr (1971) Behavior of the refractive index structure parameter near the ground. J Opt Sco Amer 61: 1646–1650CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Dawit A. Zeweldi
    • 1
  • Mekonnen Gebremichael
    • 1
  • Junming Wang
    • 2
  • Theodore Sammis
    • 2
  • Jan Kleissl
    • 3
  • David Miller
    • 4
  1. 1.Civil and Environmental Engineering DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.Department of Agronomy and HorticultureNew Mexico State UniversityLas CrucesUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of California-San DiegoSan DiegoUSA
  4. 4.Natural Resources management and Engineering DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations