Boundary-Layer Meteorology

, Volume 134, Issue 3, pp 441–458 | Cite as

Resolved Versus Parametrized Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling in Large-Eddy Simulations

  • F. Couvreux
  • F. Hourdin
  • C. Rio


A conditional sampling based on the combination of a passive tracer emitted at the surface and thermodynamic variables is proposed to characterise organized structures in large-eddy simulations of cloud-free and cloudy boundary layers. The sampling is evaluated against more traditional sampling of dry thermals or clouds. It enables the characterization of convective updrafts from the surface to the top of the boundary layer (or the top of cumulus clouds), describing in particular the transition from the sub-cloud to the cloud layer, and retrieves plume characteristics, entrainment and detrainment rates, variances and fluxes. This sampling is used to analyze the contribution of boundary-layer thermals to vertical fluxes and variances.


Coherent structures Conditional sampling Convective boundary layer Large-eddy simulations Mass-flux parametrization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht BA (1981) Parameterization of trade-cumulus cloud amounts. J Atmos Sci 38: 97–105CrossRefGoogle Scholar
  2. Atkinson BW, Zhang JW (1996) Mesoscale shallow convection in the atmosphere. Rev Geophys 34: 403–431CrossRefGoogle Scholar
  3. Berg L, Stull RB (2004) Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J Atmos Sci 61: 813–828CrossRefGoogle Scholar
  4. Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz M, Khairoutdinov JC, Lewellen DC, Lock AP, Macvean MK, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Roy Meteorol Soc 128: 1075–1093CrossRefGoogle Scholar
  5. Chatfield RB, Brost RA (1987) A two-stream model of the vertical transport of trace species in the convective boundary layer. J Geophys Res 92: 13263–13276CrossRefGoogle Scholar
  6. Couvreux F, Guichard F, Redelsperger J-L, Kiemle C, Masson V, Lafore J-P, Flamant C (2005) Assessment of water vapour variability within a convective boundary layer over land using large eddy simulations and ihop observations. Q J Roy Meteorol Soc 131: 2665–2693CrossRefGoogle Scholar
  7. Couvreux F, Guichard F, Masson V, Redelsperger J-L (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and les budget analysis. Boundary-Layer Meteorol 123: 269–294CrossRefGoogle Scholar
  8. Crum TD, Stull RB, Eloranta EW (1987) Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J Clim Appl Meteorol 26: 774–788CrossRefGoogle Scholar
  9. Cuxart J, Bougeault P, Redelsperger J-L (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc 126: 1–30CrossRefGoogle Scholar
  10. Greenhut GK, Khalsa SJS (1982) Updraft and downdraft events in the atmospheric boundary layer over the equatorial pacific ocean. J Atmos Sci 39: 1803–1817CrossRefGoogle Scholar
  11. Grossman RL (1984) Bivariate conditional sampling of moisture flux over a tropical ocean. J Atmos Sci 41: 3238–3253CrossRefGoogle Scholar
  12. Heus T, Jonker HJJ (2008) Subsiding shells around cumulus clouds. J Atmos Sci 65: 1003–1018CrossRefGoogle Scholar
  13. Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59: 1105–1123CrossRefGoogle Scholar
  14. Lafore J-P, Stein J, Ascencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Masson V, Pinty J-P, Redelsperger J-L, Richard E, Vil-Gueraude de Arellano J (1998) The meso-nh atmospheric simulation system. Part i: Adiabatic formulation and control simulations. Ann Geophys 16: 90–109CrossRefGoogle Scholar
  15. LeMone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon Weather Rev 104: 524–539CrossRefGoogle Scholar
  16. Lenschow DH, Stephens PL (1980) The role of thermals in the convective boundary layer. Boundary-Layer Meteorol 19: 509–532CrossRefGoogle Scholar
  17. Lenschow DH, Wyngaard JC, Pennel WT (1980) Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J Atmos Sci 37: 1313–1326CrossRefGoogle Scholar
  18. Miao Q, Geerts B, Lemone M (2006) Vertical velocity and buoyancy characteristics of coherent echo plumes in the convective boundary layer, detected by a profiling airborne radar. J Appl Meteorol Clim 45: 838–855CrossRefGoogle Scholar
  19. Moeng C, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51: 999–1022CrossRefGoogle Scholar
  20. Nicholls S, LeMone MA (1980) Fair weather boundary layer in GATE: the relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J Atmos Sci 37: 2051–2067CrossRefGoogle Scholar
  21. Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132: 83–106. doi: 10.1007/s10546-009-9388-0 CrossRefGoogle Scholar
  22. Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65: 407–425CrossRefGoogle Scholar
  23. Rio C, Couvreux F, Hourdin F (2010) Resolved versus parametrized boundary-layer plumes. Part II: A new formulation of mixing rates for mass-flux schemes. Boundary-Layer Meteorol (under review)Google Scholar
  24. Schumann U, Moeng C-H (1991) Plume fluxes in clear and cloudy convective boundary layers. J Atmos Sci 48: 1746–1757CrossRefGoogle Scholar
  25. Siebesma AP, Cuijpers JWM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 52: 650–666CrossRefGoogle Scholar
  26. Siebesma AP, Teixeira J (2000) An advection-diffusion scheme for the convective boundary layer: description and 1d-results. In: Proceedings of the 14th symposium on boundary layers and turbulence, Aspen, CO, American Meteorological Society, pp 133–136Google Scholar
  27. Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219CrossRefGoogle Scholar
  28. Siebesma AP, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64: 1230–1248CrossRefGoogle Scholar
  29. Soares PMM, Miranda PMA, Siebesma AP, Teixeira J (2004) An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Q J Roy Meteorol Soc 130: 3365–3383CrossRefGoogle Scholar
  30. Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34: 377–397CrossRefGoogle Scholar
  31. Wang S, Stevens B (2000) Top-hat representation of turbulence statistics in cloud-topped boundary layers: a large-eddy simulation study. J Atmos Sci 57: 423–441CrossRefGoogle Scholar
  32. Weckwerth TM, Parsons DB, Koch SE, Moore JA, LeMone MA, Demoz BB, Flamant C, Geerts B, Wang J, Feltz WF (2004) An overview of the international h20 project (IHOP 2002) and some preliminary highlights. Bull Am Meteorol Soc 85: 253–277CrossRefGoogle Scholar
  33. Williams AG, Hacker JM (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary-Layer Meteorol 61: 213–245CrossRefGoogle Scholar
  34. Wyngaard JC, Moeng C-H (1992) Parameterizing turbulent diffusion through the joint probability density. Boundary-Layer Meteorol 60: 1–13CrossRefGoogle Scholar
  35. Young GS (1988) Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735CrossRefGoogle Scholar
  36. Zhao M, Austin PH (2005) Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J Atmos Sci 62: 1269–1290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.CNRM-GAME Meteo-France and CNRSToulouseFrance
  2. 2.LMD-IPSLParisFrance

Personalised recommendations