Boundary-Layer Meteorology

, Volume 134, Issue 1, pp 109–130 | Cite as

Momentum and Sensible Heat Exchange in an Ice-Free Arctic Fjord

  • Tiina KilpeläinenEmail author
  • Anna Sjöblom


Momentum and sensible heat exchange are studied in an Arctic fjord system in Spitsbergen, Svalbard (Norway), based on tower measurements taken in January–June 2008. Due to ice-free conditions, the surface layer was unstable for most of the time, occasionally very unstable. The shape of the fjord and the surrounding topography have a large influence on the wind field. Low frequency eddies are mainly responsible for occasionally large crosswind momentum transfer that, together with upward momentum transfer (occurring in 9% of the data), invalidate conventional stability and scaling parameters. When the flow is along the fjord with moderate or high wind speeds, the Monin–Obukhov similarity theory is applicable. However, the momentum and the sensible heat exchange in the fjord system differs from the exchange taking place over the open ocean, mainly due to topographic effects.


Arctic fjord Momentum exchange Monin–Obukhov similarity theory Sensible heat exchange Topographic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas EL, Hicks BB (2002) Comments on critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 59: 2605–2607CrossRefGoogle Scholar
  2. Argentini S, Viola AP, Mastrantonio G, Maurizi A, Georgiadis T, Nardino M (2003) Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann Geophys 46: 185–196Google Scholar
  3. Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego, USA, pp 420Google Scholar
  4. Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63: 3045–3054CrossRefGoogle Scholar
  5. Beine HJ, Argentini S, Maurizi A, Mastrantonio G, Viola A (2001) The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorol Atmos Phys 78: 107–113CrossRefGoogle Scholar
  6. Brümmer B (1999) Roll and cell convection in wintertime Arctic cold-air outbreaks. J Atmos Sci 56: 2613–2636CrossRefGoogle Scholar
  7. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303: 978–983CrossRefGoogle Scholar
  8. Cornillon P, Park K-A (2001) Warm core ring velocities inferred from NSCAT. Geophys Res Lett 28: 575–578CrossRefGoogle Scholar
  9. Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol 47: 55–69CrossRefGoogle Scholar
  10. Drennan WM, Kahma KK, Donelan MA (1999) On momentum flux and velocity spectra over waves. Boundary-Layer Meteorol 92: 489–515CrossRefGoogle Scholar
  11. Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J Geophys Res 102(C9): 21115–21129CrossRefGoogle Scholar
  12. Frenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Boundary-Layer Meteorol 99: 173–206CrossRefGoogle Scholar
  13. Geernaert GL (1988) Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J Geophys Res 93(C7): 8215–8220CrossRefGoogle Scholar
  14. Geernaert GL, Hansen F, Courtney M, Herbers T (1993) Directional attributes of the ocean surface wind stress vector. J Geophys Res 98(C9): 16571–16582CrossRefGoogle Scholar
  15. Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31: 1698–1711CrossRefGoogle Scholar
  16. Grachev AA, Fairall CW, Hare JE, Edson JB, Miller SD (2003) Wind stress vector over ocean waves. J Phys Oceanogr 33(11): 2408–2429CrossRefGoogle Scholar
  17. Haarpaintner J, Gascard J-C, Haugan PM (2001) Ice production and brine formation in Storfjorden, Svalbard. J Geophys Res 106(C7): 14001–14013CrossRefGoogle Scholar
  18. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246CrossRefGoogle Scholar
  19. Högström U, Sahlée E, Drennan WM, Kahma KK, Smedman A-S, Johansson C, Pettersson H, Rutgersson A, Tuomi L, Zhang F, Johansson M (2008) Momentum fluxes and wind gradients in the marine boundary layer—a multi-platform study. Boreal Environ Res 13: 475–502Google Scholar
  20. Kelly KA, Dickinson S, McPhaden MJ, Johnson GC (2001) Ocean currents evident in satellite wind data. Geophys Res Lett 28: 2469–2472CrossRefGoogle Scholar
  21. Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286CrossRefGoogle Scholar
  22. Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J Roy Meteorol Soc 130: 2087–2103CrossRefGoogle Scholar
  23. Lange B, Larsen S, Højstrup J, Barthemlie R (2004) The influence of thermal effects on the wind speed profile of the coastal marine boundary layer. Boundary-Layer Meteorol 112: 587–617CrossRefGoogle Scholar
  24. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11: 324–336CrossRefGoogle Scholar
  25. Lee X, Massman W, Law B (2004) Handbook of micrometeorology, a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 250Google Scholar
  26. Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York, p 239Google Scholar
  27. Mahrt L, Vickers D, Sun J, Jensen N-O, Jørgensen H, Pardyjak E, Fernando H (2001) Determination of the surface drag coefficient. Boundary-Layer Meteorol 99: 249–276CrossRefGoogle Scholar
  28. Manley G (1938) Meteorological observations of the British East Greenland expedition, 1935–36, at Kangerdlugssua, 68° 10′N, 31°44′W. Q J Roy Meteorol Soc 64: 253–276CrossRefGoogle Scholar
  29. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39: 3103–3112CrossRefGoogle Scholar
  30. Morales Maqueda MA, Willmott AJ, Biggs NRT (2004) Polynya dynamics: a review of observations and modeling. Rev Geophys 42(RG1004). doi: 10.1029/2002RG000116
  31. Nilsen F, Cottier F, Skogseth R, Mattson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28: 1838–1853CrossRefGoogle Scholar
  32. Oncley SP, Businger JA, Itsweire EC, Friehe CA, LaRue JC, Chang SS (1990) Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. In: Proceedings, Ninth symposium on turbulence and diffusion, American Meteorological Society, Risø, Roskilde, Denmark, pp 237–240Google Scholar
  33. Pettersson H (2004) Wave growth in a narrow bay. Finnish Institute of Marine Research—contributions, No. 9. Finnish Institute of Marine Research, Finland, 33 ppGoogle Scholar
  34. Rieder KF, Smith JA (1998) Removing wave effects from the wind stress vector. J Geophys Res 103(C1): 1363–1374CrossRefGoogle Scholar
  35. Rieder KF, Smith JA, Weller RA (1994) Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J Geophys Res 99(C11): 22589–22596CrossRefGoogle Scholar
  36. Rutgersson A, Smedman A-S, Högström U (2001) Use of conventional stability parameters during swell. J Geophys Res 106(C11): 27117–27134CrossRefGoogle Scholar
  37. Sandvik AD, Furevik BR (2002) Case study of a coastal jet at Spitsbergen—comparison of SAR- and model-estimated wind. Mon Weather Rev 130: 1040–1051CrossRefGoogle Scholar
  38. Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26: 81–93CrossRefGoogle Scholar
  39. Sjöblom A, Smedman A-S (2002) The turbulent kinetic energy budget in the marine atmospheric surface layer. J Geophys Res 107(C10): 3142. doi: 10.1029/2001JC001016 CrossRefGoogle Scholar
  40. Sjöblom A, Smedman A-S (2003) Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorol 109: 1–25CrossRefGoogle Scholar
  41. Skogseth R, Sandvik AD, Asplin L (2007) Wind and tidal forcing on the meso-scale circulation in Storfjorden, Svalbard. Cont Shelf Res 27: 208–227CrossRefGoogle Scholar
  42. Skogseth R, Nilsen F, Smedsrud LH (2009) Supercooled water in an Arctic polynya: observations and modeling. J Glaciol 55: 43–52CrossRefGoogle Scholar
  43. Smedman A-S, Tjenström M, Högström U (1994) The near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study. J Atmos Sci 51: 3399–3411CrossRefGoogle Scholar
  44. Smedman A-S, Högström U, Bergström H, Rutgersson A, Kahma KK, Pettersson H (1999) A case-study of air–sea interaction during swell conditions. J Geophys Res 104(C11): 25833–25851CrossRefGoogle Scholar
  45. Smedman A-S, Guo Larsén X, Högström U, Kahma KK, Pettersson H (2003) Effect of sea state on the momentum exchange over the sea during neutral conditions. J Geophys Res 108(C11): 3367CrossRefGoogle Scholar
  46. Syvitski JPM, Burrell DC, Skei JM (1987) Fjords: processes and products. Springer, New York, USA, p 379Google Scholar
  47. Uttal T, Curry JA, Mcphee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83: 255–275CrossRefGoogle Scholar
  48. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14: 512–526CrossRefGoogle Scholar
  49. Zemba J, Friehe CA (1987) The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J Geophys Res 92(C2): 1489–1496CrossRefGoogle Scholar
  50. Zhang FW, Drennan WM, Haus BK, Graber HC (2009) On wind–wave-current interactions during the Shoaling Waves Experiment. J Geophys Res 114(C01018)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.The University Centre in SvalbardLongyearbyenNorway
  2. 2.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations