Boundary-Layer Meteorology

, Volume 132, Issue 2, pp 289–313 | Cite as

Mesoscale Structure of Trade Wind Convection over Puerto Rico: Composite Observations and Numerical Simulation

  • Mark R. JuryEmail author
  • Sen Chiao
  • Eric W. Harmsen


We examine the mesoscale structure of the atmospheric boundary layer (ABL), low-level circulation, and trade wind convection over the sub-tropical island of Puerto Rico in mid-summer. Shallow afternoon thunderstorms are frequently seen over the western plains of the island. Observational data include automatic weather station measurements, radiosonde profiles, infrared satellite images, and mesoscale reanalysis data with a focus on the summer of 2006. Satellite microwave radar data (TRMM and CloudSat) indicate that island clouds typically extend just above the −20°C level during afternoon hours with reflectivity values reaching 50 dBz. A singular value decomposition of 3-hourly high resolution satellite rainfall maps reveals an island mode. From this a composite is constructed for a group of ten cases. With a Froude number ≈1 the trade winds pass over the mountains and standing vortices and gravity waves are trapped in the meandering wake. The Weather and Research Forecasting (WRF) model at 1-km resolution with 51 vertical layers is used to simulate the short-lived thunderstorms for two cases: 27 June and 20 July 2006. The model correctly locates the convective cells that develop between 1400 and 1700 LST. The shallow afternoon thunderstorms are triggered by surface heat fluxes, confluent sea breezes and a mountain wake. Recommendations for enhanced observations are given.


Caribbean island Sea-breeze confluence Trade wind convection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen RG, Walter IA, Elliott R, Howell R, Itenfisu D, Jensen M, Snyder RL (2005) The ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Inst., American Society Civil Engineers, 57 ppGoogle Scholar
  2. Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteorol Oceanogr 5(2): 1–13Google Scholar
  3. Baik JJ (1992) Response of a stably stratified atmosphere to low-level heating: an application to the heat island problem. J Appl Meteorol 31: 291–303. doi: 10.1175/1520-0450(1992)031<0291:ROASSA>2.0.CO;2 CrossRefGoogle Scholar
  4. Bao JW, Michelson SA, Persson POG, Djalalova IV, Wilczak JM (2008) Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J Appl Meteorol Climatol 47:2372–2394Google Scholar
  5. Bennet S, Grusbisic V, Rasmussen RM (1998) Gravity waves, rainbands, and deep convection induced by trade wind flow over Puerto Rico. In: Proceedings of 12th conference on numerical weather prediction. AMS, PhoenixGoogle Scholar
  6. Blanchard DO, López RE (1985) Spatial patterns of convection in south Florida. Mon Weather Rev 113: 1282–1299. doi: 10.1175/1520-0493(1985)113<1282:SPOCIS>2.0.CO;2 CrossRefGoogle Scholar
  7. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5: 541–560. doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2 CrossRefGoogle Scholar
  8. Burk SD, Haack T, Rogers LT, Wagner LJ (2002) Island wake dynamics and wake influence on the evaporation duct and radar propagation. J Appl Meteorol 42: 349–367. doi: 10.1175/1520-0450(2003)042<0349:IWDAWI>2.0.CO;2 CrossRefGoogle Scholar
  9. Carbone RE, Wilson JW, Keenan TD, Hacker JM (2000) Tropical island convection in the absence of significant topography. Part I: life cycle of diurnally forced convection. Mon Weather Rev 128: 3459–3480. doi: 10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2 Google Scholar
  10. Carter MM, Elsner JB (1997) A statistical method for forecasting rainfall over Puerto Rico. Weather Forecast 12: 515–525. doi: 10.1175/1520-0434(1997)012<0515:ASMFFR>2.0.CO;2 CrossRefGoogle Scholar
  11. Chang P, Saravanan R (2001) A hybrid coupled model study of tropical Atlantic variability. J Clim 14: 361–390. doi: 10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2 CrossRefGoogle Scholar
  12. Chen AA, Taylor M (2002) Investigating the link between early season Caribbean rainfall and the El Niño+1 year. Int J Climatol 22: 87–106. doi: 10.1002/joc.711 CrossRefGoogle Scholar
  13. Chiao S (2006) Performance of planetary boundary layer schemes in the WRF model. In: Proceedings of 25th Army Science conference, Boulder, COGoogle Scholar
  14. Chopra KP (1973) Atmospheric and oceanic flow problems introduced by islands. Advances in Geophysics, vol 16, Academic Press, New York, USA, pp 298–416Google Scholar
  15. Colle BA, Yuter SE (2006) The impact of coastal boundaries and small hills on the precipitation distribution across southern Connecticut and Long Island, New York. J Appl Meteorol 135: 933–954Google Scholar
  16. Cooper H, Garstang M, Simpson J (1982) The diurnal interaction between convection and peninsular-scale forcing over south Florida. Mon Weather Rev 110: 486–503. doi: 10.1175/1520-0493(1982)110<0486:TDIBCA>2.0.CO;2 CrossRefGoogle Scholar
  17. Cuxart J, Jiménez MA, Martínez D (2006) Nocturnal meso-beta basin and katabatic flows on a midlatitude island. J Appl Meteorol 135: 918–932Google Scholar
  18. De Haan LL, Kanamitsu M, Lu CH, Roads JO (2007) A comparison of the Noah and OSU land surface models in the ECPC seasonal forecast model. J Hydrometeorol 8: 1031–1048. doi: 10.1175/JHM629.1 CrossRefGoogle Scholar
  19. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J Clim 12: 2093–2103. doi: 10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2 CrossRefGoogle Scholar
  20. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale ETA model. J Geophys Res 108(D22): 8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  21. Etling D (1989) On atmospheric vortex streets in the wake of large islands. Meteorol Atmos Phys 41: 157–164. doi: 10.1007/BF01043134 CrossRefGoogle Scholar
  22. Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13: 297–311. doi: 10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2 CrossRefGoogle Scholar
  23. Grubisic V, Smith RB, Schar C (1995) The effect of bottom friction on shallow-water flow past an isolated obstacle. J Atmos Sci 52: 1985–2005. doi: 10.1175/1520-0469(1995)052<1985:TEOBFO>2.0.CO;2 CrossRefGoogle Scholar
  24. Hafner J, Xie SP (2003) Far-field simulation of the Hawaiian wake: sea surface temperature and orographic effects. J Atmos Sci 60: 3021–3032CrossRefGoogle Scholar
  25. Hong S-Y, Dudhia J (2003) Testing of a non-local boundary layer vertical diffusion scheme in numerical weather prediction applications. In: Proceedings of 20th conference on weather analysis forecasting. AMS, Seattle, WAGoogle Scholar
  26. Jankov I, Gallus WA, Segal M, Shaw B, Koch SE (2005) The impact of different WRF model physical parametreizations and their interactions on warm season MCS rainfall. Weather Forecast 20: 1048–1060. doi: 10.1175/WAF888.1 CrossRefGoogle Scholar
  27. Jiang Q, Doyle JD (2008) On the diurnal variation of mountain waves. J Atmos Sci 65: 1360–1377CrossRefGoogle Scholar
  28. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5: 487–503. doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 CrossRefGoogle Scholar
  29. Jury MR (2009) An inter-comparison of observational, reanalysis, satellite, and coupled model data on mean rainfall in the Caribbean. J Hydrometeorol 10: 413–430CrossRefGoogle Scholar
  30. Jury MR, Malmgren BA, Winter A (2007) Sub-regional precipitation climate of the Caribbean and relationships with ENSO and NAO. J Geophys Res 112: D16107. doi: 10.1029/2006JD007541 CrossRefGoogle Scholar
  31. Keenan TD et al (2000) The Maritime Continent Thunderstorm experiment: overview and results. Bull Am Meteorol Soc 81: 2433–2455. doi: 10.1175/1520-0477(2000)081<2433:TMCTEM>2.3.CO;2 CrossRefGoogle Scholar
  32. Kingsmill DE (1995) Convection initiation associated with a sea-breeze front, a gust front and their interaction. Mon Weather Rev 123: 2913–2933. doi: 10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 CrossRefGoogle Scholar
  33. Liu C, Moncrieff MW (1996) A numerical study of the effects of ambient flow and shear on density currents. Mon Weather Rev 124: 2282–2303. doi: 10.1175/1520-0493(1996)124<2282:ANSOTE>2.0.CO;2 CrossRefGoogle Scholar
  34. Malkus JS (1954) Some results of a trade cumulus cloud investigation. J Meteorol 11: 220–237Google Scholar
  35. Malkus JS (1955) The effects of a large island upon the trade-wind air stream. Q J Roy Meteorol Soc 81(350): 538–550. doi: 10.1002/qj.49708135003 CrossRefGoogle Scholar
  36. May PT, Wilczak JM (1993) Diurnal and seasonal variations of boundary layer structure observed by a radar wind profiler and RASS. Mon Weather Rev 121: 673–682. doi: 10.1175/1520-0493(1993)121<0673:DASVOB>2.0.CO;2 CrossRefGoogle Scholar
  37. Mesinger F et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87: 343–360. doi: 10.1175/BAMS-87-3-343 CrossRefGoogle Scholar
  38. Mitchell KE et al (2002) The community Noah land surface model (LSM)-User’s guide. In: Proceedings of 15th AMS conference on hydrology. American Meteorological Society, pp 180–183Google Scholar
  39. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102(D14): 16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  40. Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21: 1260–1276. doi: 10.1175/2007JCLI1855.1 CrossRefGoogle Scholar
  41. Pagowski M, Hacker J, Bao JW (2005) Behaviour of WRF PBL schemes and land-surface models in 1-D simulation during BAMEX. WRF Users Workshop, June 27–30, Boulder, COGoogle Scholar
  42. Pearce RP, Smith RC, Malkus JS (1956) The calculation of a sea-breeze circulation in terms of the differential heating across the coast line. Q J Roy Meteorol Soc 82(352): 235–241. doi: 10.1002/qj.49708235211 CrossRefGoogle Scholar
  43. Rasmussen RM, Smolarkiewicz PK, Warner J (1989) On the dynamics of Hawaiian cloud bands: comparison of model results with observations and island climatology. J Atmos Sci 46: 1589–1608. doi: 10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2 CrossRefGoogle Scholar
  44. Rogers E, Ek M, Lin Y, Mitchell K, Parrish D, DiMego G (2001) Changes to the NCEP Meso ETA analysis and forecast system: Assimilation of observed precipitation, upgrades in land-surface physics, modified 3-DVAR analysis.
  45. Schafer R, May PT, Keenan TD, McGuffie K, Ecklund WL, Johnston PE, Gage KS (2001) Boundary layer development over a tropical island during the Maritime Continent Thunderstorm Experiment. J Atmos Sci 58: 2163–2179. doi: 10.1175/1520-0469(2001)058<2163:BLDOAT>2.0.CO;2 CrossRefGoogle Scholar
  46. Schar C, Smith RB (1993a) Shallow-water flow past isolated topography. Part I: vorticity production and wake formation. J Atmos Sci 50: 1373–1400. doi: 10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2 Google Scholar
  47. Schar C, Smith RB (1993b) Shallow-water flow past isolated topography. Part II: transition to vortex shedding. J Atmos Sci 50: 1401–1412. doi: 10.1175/1520-0469(1993)050<1401:SWFPIT>2.0.CO;2 Google Scholar
  48. Smith RB, Grubisic V (1993) Aerial observations of Hawaii’s wake. J Atmos Sci 50: 3728–3750. doi: 10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2 CrossRefGoogle Scholar
  49. Smith RB, Gleason AC, Gluhosky PA, Grubišić V (1997) The wake of St. Vincent. J Atmos Sci 54: 606–623. doi: 10.1175/1520-0469(1997)054<0606:TWOSV>2.0.CO;2 CrossRefGoogle Scholar
  50. Smolarkiewicz PK, Rasmussen RM, Clark TL (1988) On the dynamics of Hawaiian cloud bands: island forcing. J Atmos Sci 45: 1872–1905. doi: 10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2 CrossRefGoogle Scholar
  51. Szumowski MJ, Rauber RM, Ochs HT, Miller LJ (1997) The microphysical structure and evolution of Hawaiian rainband clouds. Part I: radar observations of rainbands containing high reflectivity cores. J Atmos Sci 54: 369–385. doi: 10.1175/1520-0469(1997)054<0369:TMSAEO>2.0.CO;2 Google Scholar
  52. Wakimoto RM, Atkins NT (1994) Observations of the sea-breeze front during CaPE. Part I: single-Doppler, satellite, and cloud photogrammetry analysis. Mon Weather Rev 122: 1092–1114. doi: 10.1175/1520-0493(1994)122<1092:OOTSBF>2.0.CO;2 Google Scholar
  53. Weckwerth TM et al (2004) An overview of the international H2O project (IHOP_2002) and some preliminary highlights. Bull Am Meteorol Soc 85: 253–277. doi: 10.1175/BAMS-85-2-253 CrossRefGoogle Scholar
  54. Wilson JW, Schreiber WE (1986) Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon Weather Rev 114: 2516–2536. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of Puerto RicoMayaguezUSA
  2. 2.Florida Institute of TechnologyMelbourneUSA
  3. 3.Agricultural Engineering DepartmentUPRMMayaguezUSA

Personalised recommendations