A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

  • Julien Pergaud
  • Valéry Masson
  • Sylvie Malardel
  • Fleur Couvreux


For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).


Atmospheric boundary layer Detrainment Entrainment Mass flux Parameterization Shallow convection Turbulence 


  1. Arakawa A (2004) The cumulus parameterization problem: past present and future. J Clim 17: 2493–2525CrossRefGoogle Scholar
  2. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1. J Atmos Sci 31: 674–700CrossRefGoogle Scholar
  3. Bechtold P, Cuijpers JWM (1995) Cloud perturbations of temperature and humidity: a LES study. Boundary-Layer Meteorol 76: 377–386CrossRefGoogle Scholar
  4. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J Roy Meteorol Soc 127: 869–886CrossRefGoogle Scholar
  5. Berg LK, Stull RB (2002) Accuracy of point and line measures of boundary layer cloud amount. J Appl Meteorol 41: 640–650CrossRefGoogle Scholar
  6. Betts AK (1973) Nonprecipitatting cumulus convection and its parameterization. Q J Roy Meteorol Soc 99: 178–196CrossRefGoogle Scholar
  7. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117: 1872–1890CrossRefGoogle Scholar
  8. Brown A, Cederwall RT, Chlond A, Duynkerke PG, Golaz JC, Khairoutdinov M, Lewellen D, Lock AP, Macvean MK, Moeng CH, Neggers RAJ, Siebesma P, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Roy Meteorol Soc 128: 1075–1093CrossRefGoogle Scholar
  9. Browning KA (1993) The GEWEX Cloud System Study (GCSS). Bull Am Meteorol Soc 74: 387–399CrossRefGoogle Scholar
  10. Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev IV: 345–376CrossRefGoogle Scholar
  11. Cheinet S (2003) A multiple mass-flux parameterization for the surface-generated convection, Part 1: dry plumes. J Atmos Sci 60: 2313–2327CrossRefGoogle Scholar
  12. Clarke RH, Dyer AJ, Reid DG, Troup AJ (1971) The Wangara experiment: boundarylayer data. Division Meteorological Physics Paper No. 19: CSIRO, AustraliaGoogle Scholar
  13. Couvreux F, Guichard F, Redelsperger JL, Kiemle C, Masson V, Lafore JP, Flamant C (2005) Water–vapour variablility within a convective boundary-layer assessed by large-eddy simulations and IHOP2002 observations. Q J Roy Meteorol Soc 131: 2665–2693CrossRefGoogle Scholar
  14. Cuijpers JWM, Holtslag AM (1998) Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. J Atmos Sci 55: 151–162CrossRefGoogle Scholar
  15. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc 126: 1–30CrossRefGoogle Scholar
  16. De Roode SR, Duynkerke PG, Siebesma P (2000) Analogies between mass-flux and Reynolds-averaged equations. J Atmos Sci 57: 1585–1598CrossRefGoogle Scholar
  17. De Rooy WC, Siebesma P (2008) A simple parameterization for detrainment in shallow cumulus. Mon Weather Rev 136: 560–576CrossRefGoogle Scholar
  18. Deardorff JW (1966) The counter-gradient heat flux in the lower atmosphere and in the laboratory. J Atmos Sci 23: 503–506CrossRefGoogle Scholar
  19. Deardorff JW (1980a) Cloud top entrainment instability. J Atmos Sci 37: 131–147CrossRefGoogle Scholar
  20. Deardorff JW (1980b) Stratocumulus-capped mixed layers derived from a three-dimensionnal model. Boundary-Layer Meteorol 18: 495–527CrossRefGoogle Scholar
  21. Duynkerke PG, Hignett P (1995) Simulation of diurnal variation in a stratocumulus-capped marine boundary layer during FIRE. Mon Weather Rev 52: 2763–2777Google Scholar
  22. Duynkerke PG, Zhang H, Jonker PJ (1995) Microphysical and turbulent structure of nocturnal stratocumulus as observed during astex. J Atmos Sci 52: 2763–2777CrossRefGoogle Scholar
  23. Duynkerke PG, De Roode SR, Van Zanten MC, Calvo J, Cuxart J, Cheinet S, Chlond A, Grenier H, Jonker PJ, Kohler M, Lenderink G, Lewellen D, Lappen CL, Lock AP, Moeng CH, Muller F, Olmeda D, Piriou JM, Sanchez E, Sednev I (2004) Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Q J Roy Meteorol Soc 130: 3269–3296CrossRefGoogle Scholar
  24. Grant ALM (2001) Cloud-base fluxes in the cumulus-capped boundary layer. Q J Roy Meteorol Soc 127: 407–421CrossRefGoogle Scholar
  25. Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: tests in single-column and general circulation models. Q J Roy Meteorol Soc 123: 1153–1183CrossRefGoogle Scholar
  26. Hignett P (1991) Observations of the diurnal variation in the cloud-capped marine boundary layer. J Atmos Sci 45: 1474–1482CrossRefGoogle Scholar
  27. Holland JZ, Rasmusson EM (1973) Measurement of atmospheric mass, energy and Momentum budgets over a 500-kilometer square of tropical ocean. Mon Weather Rev 101: 44–55CrossRefGoogle Scholar
  28. Holtslag AAM, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48: 1690–1698CrossRefGoogle Scholar
  29. Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59: 1105–1122CrossRefGoogle Scholar
  30. Kain JS, Fritsch JM (1990) A one-dimensionnal entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47: 2784–2802CrossRefGoogle Scholar
  31. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fisher C, Hereil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, Arellano JV (1998) The meso-NH atmospheric simulation system, Part I: adiabatic formulation and control simulations. Ann Geophys 16: 90–109CrossRefGoogle Scholar
  32. Lappen CL, Randall DA (2001) Toward a unified parameterization of the boundary layer and moist convection, Part 2: lateral mass exchanges and subplume-scale fluxes. J Atmos Sci 58: 2037–2051CrossRefGoogle Scholar
  33. Lenderink G, Siebesma P, Cheinet S, Irons S, Jones CG, Marquet P, Muller F, Olmeda D, Calvo J, Sanchez E, Soares PMM (2004) The diurnal cycle of shallow cumulus clouds over land: a single column model intercomparaison study. Q J Roy Meteorol Soc 130: 3339–3364CrossRefGoogle Scholar
  34. Lewellen D, Lewellen W (1998) Large-eddy boundary layer entrainment. J Atmos Sci 55: 2645–2665CrossRefGoogle Scholar
  35. Lewellen D, Lewellen W (2002) Entrainment and decoupling relations for cloudy boundary layers. J Atmos Sci 59: 2966–2987CrossRefGoogle Scholar
  36. Lilly DK (1968) Models of cloud-topped mixed layers under a strong inversion. Q J Roy Meteorol Soc 94: 292–309CrossRefGoogle Scholar
  37. Neggers RAJ, Siebesma P, Jonker HJJ (2002) A multiparcel model for shallow cumulus convection. J Atmos Sci 59: 1655–1668CrossRefGoogle Scholar
  38. Neggers RAJ, Siebesma AP, Lenderink G, Holtslag AM (2004) An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon Weather Rev 132: 2525–2538CrossRefGoogle Scholar
  39. Nicholls S (1984) The dynamics of stratocumulus: aircraft observations and comparisons with a mixed layer model. Q J Roy Meteorol Soc 110: 783–820CrossRefGoogle Scholar
  40. Ooyama K (1971) A theory on parameterization of cumulus convection. J Meteorol Soc Jpn 49: 744–756Google Scholar
  41. Randall DA (1980) Conditionnal instability of the first kind upside-down. J Atmos Sci 37: 125–130CrossRefGoogle Scholar
  42. Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer. J Atmos Sci 65: 407–425CrossRefGoogle Scholar
  43. Schumann U (1987) The countergradient heat flux in stratified turbulent flows. Nucl Eng Des 100: 255–262CrossRefGoogle Scholar
  44. Siebesma P (1998) Shallow cumulus convection. In: Plate EJ et al (eds) Buoyant convection in geophysical flows. Kluwer, Amsterdam, pp 441–486Google Scholar
  45. Siebesma P, Cuijpers JWM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 53: 650–666CrossRefGoogle Scholar
  46. Siebesma P, Holtslag AM (1996) Model impacts of entrainment and detrainment rates in shallow cumulus convection. J Atmos Sci 53: 2354–2364CrossRefGoogle Scholar
  47. Siebesma P, Teixeira J (2000) An advection-diffusion scheme for the convective boundary layer, description and 1D results. In: Proceedings of 14th symposium on boundary layers and turbulence, Aspen, USA, pp 133–136Google Scholar
  48. Siebesma P, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng CH, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219CrossRefGoogle Scholar
  49. Siebesma P, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64: 1230–1248CrossRefGoogle Scholar
  50. Simpson J, Wiggert V (1969) Models of precipitating cumulus towers. Mon Weather Rev 97: 471–489CrossRefGoogle Scholar
  51. Soares PMM, Miranda PMA, Siebesma AP, Teixeira J (2004) An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Q J Roy Meteorol Soc 130: 3055–3079CrossRefGoogle Scholar
  52. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666Google Scholar
  53. Sullivan PP, Moeng CH, Stevens B, Lenschow DH, Mayor SD (1998) Structure of the entrainment zone capping the convective. J Atmos Sci 55: 3042–3064CrossRefGoogle Scholar
  54. Taylor GR, Baker MB (1991) Entrainment and detrainment in cumulus clouds. J Atmos Sci 48: 112–121CrossRefGoogle Scholar
  55. Teixeira J, Stevens B, Bretherton CS, Cederwall R, Doyle JD, Golaz JC, Holtslag AMM, Klein SA, Lundquist JK, Randall DA, Siebesma AP, Soares PMM (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89: 453–458CrossRefGoogle Scholar
  56. Tiedtke M (1989) A comprehensive mass-flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 177: 1779–1800CrossRefGoogle Scholar
  57. Tomas S, Masson V (2006) A parametrization of third order moments for dry convective boundary layer. Boundary-Layer Meteorol 120: 437–454CrossRefGoogle Scholar
  58. Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148CrossRefGoogle Scholar
  59. Wang S, Stevens B (2000) Top-hat representation of turbulence statistics in cloud-topped boundary layers: a large eddy simulation study. J Atmos Sci 57: 423–441CrossRefGoogle Scholar
  60. Weckwerth TM, Parsons DB, Koch SE, Moore JA, Lemone MA, Demoz BR, Flamant C, Geerts B, Wang J, Feltz W (2004) An overview of the international H2O project (IHOP_2002) and some preliminary highlights. Bull Am Meteorol Soc 85: 253–277CrossRefGoogle Scholar
  61. Wood R, Bretherton CS, Hartmann DL (2002) Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys Res Lett 29: 7.1–7.4Google Scholar
  62. Yanai M, Esbensen S, Chu J (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30: 611–627CrossRefGoogle Scholar
  63. Young GS (1988) Turbulence structure of the convective boundary layer, Part II: Phoenix 78 Aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735CrossRefGoogle Scholar
  64. Zhao M, Austin PH (2003) Episodic mixing and buoyancy-sorting representations of shallow convection: a diagnostic study. J Atmos Sci 60: 892–912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Julien Pergaud
    • 1
  • Valéry Masson
    • 1
  • Sylvie Malardel
    • 1
  • Fleur Couvreux
    • 1
  1. 1.CNRM - GAMEGroupe de Modélisation à Moyenne Échelle, Météo-FranceToulouseFrance

Personalised recommendations