Boundary-Layer Meteorology

, Volume 131, Issue 3, pp 441–463 | Cite as

Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based Observations

  • A. Gohm
  • F. Harnisch
  • J. Vergeiner
  • F. Obleitner
  • R. Schnitzhofer
  • A. Hansel
  • A. Fix
  • B. Neininger
  • S. Emeis
  • K. Schäfer
Article

Abstract

An observational dataset from a wintertime field campaign in the Inn Valley, Austria, is analysed in order to study mechanisms of air pollution transport in an Alpine valley. The results illustrate three types of mechanisms: transport by a density current, back-and-forth transport by valley winds, and transport by slope winds. The first type is associated with an air mass difference along the valley. Cooler air located in the lower part of the valley behaves like a density current and produces the advection of pollutants by upvalley winds. In the second type, strong horizontal gradients in pollution concentrations exist close to ground. Multiple wind reversals result in a back-and-forth transport of pollutants by weak valley winds. In the third type, upslope winds during daytime decrease low-level pollution concentrations and cause the formation of elevated pollution layers.

Keywords

Aerosols ALPNAP Foehn Lidar Local winds NOx Particulate matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader DC, Whiteman CD (1989) Numerical simulation of cross-valley plume dispersion during the morning transition period. J Appl Meteorol 28: 652–664CrossRefGoogle Scholar
  2. Banta RM, Shepson PB, Bottenheim JW, Anlauf KG, Wiebe HA, Gallant A, Biesenthal T, Olivier LD, Zhu CJ, McKendry IG, Steyn DG (1997) Nocturnal cleansing flows in a tributary valley. Atmos Environ 31: 2147–2162CrossRefGoogle Scholar
  3. Beauchamp J, Wisthaler A, Grabmer W, Neuner C, Weber A, Hansel A (2004) Short-term measurements of CO, NO, NO2, organic compounds and PM10 at a motorway location in an Austrian valley. Atmos Environ 38: 2511–2522CrossRefGoogle Scholar
  4. Carnuth W, Trickl T (2000) Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesoclina experiment. Atmos Environ 34: 1425–1434CrossRefGoogle Scholar
  5. Chazette P, Couvert P, Randriamiarisoa H, Sanak J, Bonsang B, Moral P, Berthier S, Salanave S, Toussaint F (2005) Three-dimensional survey of pollution during winter in French Alps valleys. Atmos Environ 39: 1035–1047CrossRefGoogle Scholar
  6. Darby LS, Allwine KJ, Banta RM (2006) Nocturnal low-level jet in a mountain basin complex. Part II: transport and diffusion of tracer under stable conditions. J Appl Meteorol Climatol 45: 740–753CrossRefGoogle Scholar
  7. De Wekker SFJ, Steyn DG, Nyeki S (2004) A comparison of aerosol-layer and convective boundary-layer structure over a mountain range during STAAARTE ’97. Boundary-Layer Meteorol 113: 249–271CrossRefGoogle Scholar
  8. Emeis S, Jahn C, Münkel C, Münsterer C, Schäfer K (2007) Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteorol Z 16: 415–424CrossRefGoogle Scholar
  9. Fast JD, Allwine KJ, Dietz RN, Clawson KL, Torcolini JC (2006) Dispersion of perfluorocarbon tracers within the Salt Lake Valley during VTMX 2000. J Appl Meteorol Climatol 45: 793–812CrossRefGoogle Scholar
  10. Furger M, Dommen J, Graber WK, Poggio L, Prévôt ASH, Emeis S, Grell G, Trickl T, Gomiscek B, Neininger B, Wotawa G (2000) The VOTALP Mesolcina Valley campaign 1996—concept, background and some highlights. Atmos Environ 34: 1395–1412CrossRefGoogle Scholar
  11. Gohm A, Zängl G, Mayr GJ (2004) South foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): verification of high-resolution numerical simulations with observations. Mon Weather Rev 132: 78–102CrossRefGoogle Scholar
  12. Hanna SR, Strimaitis DG (1990) Rugged terrain effects on diffusion. In: Blumen W (eds) Atmospheric processes over complex terrain, meteorological monographs, vol 23. American Meteorological Society, Boston, pp 109–143Google Scholar
  13. Harnisch F (2007) Airborne aerosol measurements in the Inn Valley: spatial distribution of aerosols during wintertime. Diploma thesis, Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, 112 ppGoogle Scholar
  14. Harnisch F, Gohm A, Fix A, Schnitzhofer R, Hansel A, Neininger B (2009) Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime. Meteorol Atmos Phys (in press)Google Scholar
  15. Heimann D, de Franceschi M, Emeis S, Lercher P, Seibert P (eds) (2007) Air pollution, traffic noise and related health effects in the Alpine space: a guide for authorities and consulters, ALPNAP comprehensive report. Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Trento, Italy, 335 pp. http://www.alpnap.org/results.html. Accessed 9 Jan 2009
  16. Hennemuth B (1986) Thermal asymmetry and cross-valley circulation in a small alpine valley. Boundary-Layer Meteorol 36: 371–394CrossRefGoogle Scholar
  17. Kitada T, Regmi RP (2003) Dynamics of air pollution transport in late wintertime over Kathmandu Valley, Nepal: as revealed with numerical simulation. J Appl Meteorol 42: 1770–1798CrossRefGoogle Scholar
  18. Kossmann M, Corsmeier U, De Wekker SFJ, Fiedler F, Vögtlin R, Kalthoff N, Güsten H, Neininger B (1999) Observations of handover processes between the atmospheric boundary layer and the free troposphere over mountainous terrain. Contrib Atmos Phys 72: 329–350Google Scholar
  19. Lee SM, Fernando HJS, Princevac M, Zajic D, Sinesi M, McCulley JL, Anderson J (2003) Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley. Environ Fluid Mech 3: 331–362CrossRefGoogle Scholar
  20. Martilli A, Steyn DG (2007) A numerical study of recirculation processes in the Lower Fraser Valley (British Columbia, Canada). In: Borrego C, Norman AL (eds) Air pollution modeling and its applications XVII. Springer, New York, pp 97–101Google Scholar
  21. McKendry IG, Steyn DG, Lundgren J, Hoff RM, Strapp W, Anlauf K, Froude F, Martin JB, Banta RM, Olivier LD (1997) Elevated ozone layers and vertical down-mixing over the Lower Fraser Valley, BC. Atmos Environ 31: 2135–2146CrossRefGoogle Scholar
  22. McKendry IG, Steyn DG, Banta RM, Strapp W, Anlauf K, Pottier J (1998) Daytime photochemical pollutant transport over a tributary valley lake in southwestern British Columbia. J Appl Meteorol 37: 393–404CrossRefGoogle Scholar
  23. Meister A, Fix A, Flentje H, Wirth M, Ehret G (2003) TropOLEX: a new tuneable airborne lidar system for the measurement of tropospheric ozone. In: Proceedings of the 6th international symposium on tropospheric profiling, Leipzig, 14–20 September 2003, pp 233–253Google Scholar
  24. Molitor R, Käfer A, Thaller O, Samaras Z, Tourlou PM, Ntziachristos L (2001) Road freight transport and the environment in mountainous areas. Technical report 68, European Environment Agency. http://www.eea.europa.eu/publications/technical_report_2001_68. Accessed 9 Jan 2009
  25. Prévôt ASH, Dommen J, Bäumle M, Furger M (2000) Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley. Atmos Environ 34: 1413–1423CrossRefGoogle Scholar
  26. Reuten C, Steyn DG, Strawbridge KB, Bovis P (2005) Observations of the relation between upslope flows and the convective boundary layer in steep terrain. Boundary-Layer Meteorol 116: 37–61CrossRefGoogle Scholar
  27. Reuten C, Steyn DG, Allen SE (2007) Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems. J Geophys Res 112: D11114CrossRefGoogle Scholar
  28. Schäfer K, Vergeiner J, Emeis S, Wittig J, Hoffmann M, Obleitner F, Suppan P (2008) Atmospheric influences and local variability of air pollution close to a motorway in an Alpine valley during winter. Meteorol Z 17: 297–309CrossRefGoogle Scholar
  29. Schmidli J, Poulos GS, Daniels MH, Chow FK (2009) External influences on nocturnal thermally driven flows in a deep valley. J Appl Meteorol Climatol 48: 3–23CrossRefGoogle Scholar
  30. Schnitzhofer R, Beauchamp J, Dunkl J, Wisthaler A, Weber A, Hansel A (2008) Long-term measurements of CO, NO, NO2, benzene, toluene and PM10 at a motorway location in an Austrian valley. Atmos Environ 42: 1012–1024CrossRefGoogle Scholar
  31. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000a) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027CrossRefGoogle Scholar
  32. Seibert P, Feldmann H, Neiniger B, Bäumle M, Trickl T (2000b) South foehn and ozone in the Eastern Alps—case study and climatological aspects. Atmos Environ 34: 1379–1394CrossRefGoogle Scholar
  33. Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially cooled sloping surface. J Fluid Mech 571: 149–175CrossRefGoogle Scholar
  34. Spuler SM, Mayor SD (2005) Scanning eye-safe elastic backscatter lidar at 1.54 μm. J Atmos Ocean Technol 22: 696–703CrossRefGoogle Scholar
  35. Triantafyllou AG, Kassomenos PA (2002) Aspects of atmospheric flow and dispersion of air pollutants in a mountainous basin. Sci Total Environ 297: 85–103CrossRefGoogle Scholar
  36. Umweltbundesamt (2004) Statuserhebung betreffend Überschreitung der IG-L-Grenzwerte für PM10 und Schwebestaub, Blei und Cadmium im Staubniederschlag im Inntal, 2002. Report prepared by order of the Tiroler Landesregierung, Umweltbundesamt GmbH, Wien, 236 pp. http://www.tirol.gv.at/uploads/media/Stat_2002_PM10.pdf. Accessed 9 Jan 2009
  37. Vergeiner I, Dreiseitl E (1987) Valley winds and slope winds—observations and elementary thoughts. Meteorol Atmos Phys 36: 267–286Google Scholar
  38. Vergeiner J, Mayr GJ (2000) Case study of the MAP-IOP “sandwich” foehn on 18th October 1999. MAP Newsl 13:36–37. http://www.map.meteoswiss.ch/map-doc/newsletter13.htm. Accessed 9 Jan 2009
  39. Wakimoto RM, McElroy JL (1986) Lidar observation of elevated pollution layers over Los Angeles. J Clim Appl Meteorol 25: 1583–1599CrossRefGoogle Scholar
  40. Weigel AP, Rotach MW (2004) Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q J Roy Meteorol Soc 130: 2605–2627CrossRefGoogle Scholar
  41. Whiteman CD (1989) Morning transition tracer experiments in a deep narrow valley. J Appl Meteorol 28: 626–635CrossRefGoogle Scholar
  42. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York, p 355Google Scholar
  43. Wotawa G, Seibert P, Kromp-Kolb H, Hirschberg M (2000) Verkehrsbedingte Stickoxid-Belastung im Inntal: Einfluss meteorologischer und topographischer Faktoren. Final report, project no. 6983 of OeNB-Jubiläumsfonds, Institut für Meteorologie und Physik, Universität für Bodenkultur, Wien, 28 pp. http://www.boku.ac.at/imp/envmet/Inntal-Bericht.pdf. Accessed 9 Jan 2009

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Gohm
    • 1
  • F. Harnisch
    • 2
  • J. Vergeiner
    • 1
  • F. Obleitner
    • 1
  • R. Schnitzhofer
    • 3
  • A. Hansel
    • 3
  • A. Fix
    • 2
  • B. Neininger
    • 4
  • S. Emeis
    • 5
  • K. Schäfer
    • 5
  1. 1.Institute of Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria
  2. 2.Institut für Physik der Atmosphäre, DLROberpfaffenhofenGermany
  3. 3.Institute for Ion Physics and Applied PhysicsUniversity of InnsbruckInnsbruckAustria
  4. 4.MetAir AGMenzingenSwitzerland
  5. 5.IMK-IFUForschungszentrum KarlsruheGarmisch-PartenkirchenGermany

Personalised recommendations