Boundary-Layer Meteorology

, Volume 130, Issue 3, pp 437–443 | Cite as

Scintillometer Intercomparison Study—Continued

  • J. Kleissl
  • C. J. Watts
  • J. C. Rodriguez
  • S. Naif
  • E. R. Vivoni
Open Access
Note

Abstract

An earlier study by one of the authors reported significant differences of up to 21% in linear regression slopes between six Kipp & Zonen large-aperture scintillometers. In this note, the consistency of this increasingly popular instrument for measuring sensible heat fluxes at the km scale was quantified by comparing measurements from four Scintec boundary-layer scintillometers and one large-aperture scintillometer over nearly identical transects. The Kipp & Zonen instrument’s sensible heat fluxes were more than 20% larger than those from the Scintec instruments, while the difference in regression slopes amongst the Scintec instruments was 3% or less.

Keywords

Instrument intercomparison Large-aperture scintillometer Sensible heat flux 

References

  1. Andreas E (1989) Two-wavelength method of measuring path averaged turbulent surface heat fluxes. J Atmos Ocean Technol 6: 280–292CrossRefGoogle Scholar
  2. de Bruin H (2002) Introduction: renaissance of scintillometry. Boundary-Layer Meteorol 105(1): 1–4CrossRefGoogle Scholar
  3. de Bruin H, Kohsiek W, van den Hurk B (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapor using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63: 231–257CrossRefGoogle Scholar
  4. de Bruin H, van den Hurk B, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76: 25–40CrossRefGoogle Scholar
  5. Hartogensis O, Watts C, Rodriguez J-C, de Bruin H (2003) Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. J Hydrometeorol 4: 915–928CrossRefGoogle Scholar
  6. Hartogensis O, Kesteren BV, Evans J, Bradford J, Moene A, Holtslag A (2008) Sensible and latent heat fluxes with an optical and millimeter wave scintillometer system at the chilbolton test range. In: Proceedings 8th annual meeting of the European Meteorological Society (EMS), Amsterdam, The NetherlandsGoogle Scholar
  7. Hill R, Ochs G, Wilson J (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58: 391–408CrossRefGoogle Scholar
  8. Kleissl J, Gomez J, Hong S-H, Hendrickx J, Rahn T, Defoor W (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128: 133–150CrossRefGoogle Scholar
  9. Kleissl J, Hong S-H, Hendrickx J (2009) New mexico scintillometer network in support of remote sensing, and hydrologic and meteorological models. Bull Amer Meteorol Soc 90(2)Google Scholar
  10. Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Berlin, pp 250Google Scholar
  11. Loescher H, Ocheltree T, Tanner B, Swiatek E, Dano B, Wong J, Zimmerman G, Campbell J, Stock C, Jacobsen L, Shiga Y, Kollas J, Liburdy J, Law B (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer-thermometers. Agric Forest Meteorol 133: 119–139CrossRefGoogle Scholar
  12. McAneney K, Green A, Astill M (1995) Large-aperture scintillometry: the homogeneous case. Agric Forest Meteorol 76: 149–162CrossRefGoogle Scholar
  13. Meijninger W, Hartogensis O, Kohsiek W, Hoedjes J, Zuurbier R, de Bruin H (2002) Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—flevoland field experiment. Boundary-Layer Meteorol 105: 63–83CrossRefGoogle Scholar
  14. Panofsky H, Dutton J (1984) Atmospheric turbulence. Wiley, New York, pp 397Google Scholar
  15. Schüttemeyer D (2005) The surface energy balance over drying semi-arid terrain in West Africa. Ph.D. thesis, Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  16. Wyngaard J, Izumi Y, Collings SA Jr (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Amer 61: 1646–1650CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • J. Kleissl
    • 1
  • C. J. Watts
    • 2
  • J. C. Rodriguez
    • 2
  • S. Naif
    • 1
  • E. R. Vivoni
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Departamento de FisicaUniversidad de SonoraSonoraMexico
  3. 3.Department of Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations