Advertisement

Boundary-Layer Meteorology

, Volume 130, Issue 2, pp 209–228 | Cite as

The Turbulent Lagrangian Time Scale in Forest Canopies Constrained by Fluxes, Concentrations and Source Distributions

  • Vanessa Haverd
  • Ray Leuning
  • David Griffith
  • Eva van Gorsel
  • Matthias Cuntz
Open Access
Original Paper

Abstract

One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in south-eastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.

Keywords

Atmospheric dispersion Lagrangian time scale Micrometeorology Turbulent transport Plant canopies 

Notes

Acknowledgements

We gratefully acknowledge the expert technical assistance of Steve Zegelin, Dale Hughes, Mark Kitchen, Richard Hurley, Martin Riggenbach and Graham Kettlewell. Thanks also to David Jupp for supplying the ground-based lidar data and Heather Keith and Stephen Livesley for the ground CO2 flux measurements. Mike Raupach and Ian Harman kindly reviewed the manuscript and provided helpful suggestions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Baldocchi D (1992) A Lagrangian random-walk model for simulating water-vapor, Co-2 and sensible heat-flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorol 61: 113–144. doi: 10.1007/BF02033998 CrossRefGoogle Scholar
  2. Denmead OT (1991) Sources and sinks of greenhouse gases in the soil-plant environment. Vegetatio 91: 73–86. doi: 10.1007/BF00036049 CrossRefGoogle Scholar
  3. Denmead OT, Harper LA, Sharpe RR (2000) Identifying sources and sinks of scalars in a corn canopy with inverse Lagrangian dispersion analysis I. Heat. Agric For Meteorol 104: 67–73. doi: 10.1016/S0168-1923(00)00148-9 CrossRefGoogle Scholar
  4. Denmead OT, Raupach MR, Leuning R, Dunin FX, Freney JR (2005) Inverse Lagrangian analysis of heat, vapor, and gas exchange in plant canopies. In: Sadler EJ, Ham JM, Tanner B, Baker JM, Hatfield JL (eds) Micrometeorolgical measurements in agricultural systems. American Society of Agronomy, MadisonGoogle Scholar
  5. Doherty J (1999) PEST. Watermark numerical computing, Townsville, AustraliaGoogle Scholar
  6. Fest BJ, Livesley SJ, Drosler M, van Gorsel E, Arndt SK (2008) Soil–atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agric Forest Meteorol. doi: 10.1016/j.agrformet.2008.09.007
  7. Goudriaan J, van Laar HH (1994) Modelling potential crop growth processes, Current Issues in Production Ecology, vol 2. Kluwer, Dordrecht, p 238Google Scholar
  8. Griffith DWT (2002) FTIR measurements of atmospheric trace gases and their fluxes. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, Chichester, pp 2823–2841Google Scholar
  9. Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123: 339–363. doi: 10.1007/s10546-006-9145-6 CrossRefGoogle Scholar
  10. Haverd V, Cuntz M, Leuning R, Keith H (2007) Air and biomass heat storage fluxes in a forest canopy: calculation within a soil vegetation atmosphere transfer model. Agric For Meteorol 147: 125–139. doi: 10.1016/j.agrformet.2007.07.006 CrossRefGoogle Scholar
  11. Jupp DLB, Culvenor DS, Lovell JL, Newnham GJ, Strahler AH, Woodcock CE (2008) Estimating forest LAI profiles and structural parameters using a ground based laser called “Echidna®”. Tree Physiol. doi: 10.1093/treephys/tpn022 Google Scholar
  12. Kaimal JC, Finnigan JJ (1993) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289Google Scholar
  13. Katul G, Oren R, Ellsworth D, Hsieh CI, Phillips N, Lewin K (1997) A Lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. J Geophys Res Atmos 102: 9309–9321CrossRefGoogle Scholar
  14. Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol 113: 81–109. doi: 10.1023/B:BOUN.0000037333.48760.e5 CrossRefGoogle Scholar
  15. Keith H, Wong SC (2006) Measurement of soil CO2 efflux using soda lime absorption: both quantitative and reliable. Soil Biol Biochem 38: 1121–1131. doi: 10.1016/j.soilbio.2005.09.012 CrossRefGoogle Scholar
  16. Legg BJ, Raupach MR, Coppin PA (1986) Experiments on scalar dispersion within a model-plant canopy, vol 3. An elevated line source. Boundary-Layer Meteorol 35: 277–302. doi: 10.1007/BF00123645 CrossRefGoogle Scholar
  17. Leuning R (1995) A critical-appraisal of a combined stomatal-photosynthesis model for C-3 plants. Plant Cell Environ 18: 339–355. doi: 10.1111/j.1365-3040.1995.tb00370.x CrossRefGoogle Scholar
  18. Leuning R (2000) Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary-Layer Meteorol 96: 293–314. doi: 10.1023/A:1002449700617 CrossRefGoogle Scholar
  19. Leuning R, Kelliher FM, Depury DGG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration—scaling from leaves to canopies. Plant Cell Environ 18: 1183–1200. doi: 10.1111/j.1365-3040.1995.tb00628.x CrossRefGoogle Scholar
  20. Leuning R, Denmead OT, Miyata A, Kim J (2000) Source/sink distributions of heat, water vapour, carbon dioxide and methane in a rice canopy estimated using Lagrangian dispersion analysis. Agric For Meteorol 104: 233–249. doi: 10.1016/S0168-1923(00)00158-1 CrossRefGoogle Scholar
  21. Massman WJ, Weil JC (1999) An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Boundary-Layer Meteorol 91: 81–107. doi: 10.1023/A:1001810204560 CrossRefGoogle Scholar
  22. Nemitz E, Sutton MA, Gut A, San Jose R, Husted S, Schjoerring JK (2000) Sources and sinks of ammonia within an oilseed rape canopy. Agric For Meteorol 105: 385–404. doi: 10.1016/S0168-1923(00)00205-7 CrossRefGoogle Scholar
  23. Ogee J, Brunet Y (2002) A forest floor model for heat and moisture including a litter layer. J Hydrol (Amst) 255: 212–233. doi: 10.1016/S0022-1694(01)00515-7 CrossRefGoogle Scholar
  24. Poggi D, Katul G, Cassiani M (2008) On the anmalous behavior of the Lagrangian structure function similarity constant inside dense canopies. Atmos Environ 42: 4212–4231. doi: 10.1016/j.atmosenv.2008.01.020 CrossRefGoogle Scholar
  25. Raupach MR (1989) Applying Lagrangian fluid-mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric For Meteorol 47: 85–108. doi: 10.1016/0168-1923(89)90089-0 CrossRefGoogle Scholar
  26. Raupach MR (1989) A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q J R Meteorol Soc 115: 609–632. doi: 10.1002/qj.49711548710 CrossRefGoogle Scholar
  27. Raupach MR (2001) Inferring biogeochemical sources and sinks from atmospheric concentrations: general considerations and applications in vegetation canopies. In: Schulze ED (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, p 350Google Scholar
  28. Raupach MR, Denmead OT, Dunin FX (1992) Challenges in Linking atmospheric CO2 concentrations to fluxes at local and regional scales. Aust J Bot 40: 697–716. doi: 10.1071/BT9920697 CrossRefGoogle Scholar
  29. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382. doi: 10.1007/BF00120941 CrossRefGoogle Scholar
  30. Ross PJ (2003) Modeling soil water and solute transport—fast, simplified numerical solutions. Agron J 95: 1352–1361CrossRefGoogle Scholar
  31. Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6: 1335–1372. doi: 10.1080/01431168508948283 CrossRefGoogle Scholar
  32. Siqueira M, Katul G, Lai CT (2002) Quantifying net ecosystem exchange by multilevel ecophysiological and turbulent transport models. Adv Water Resour 25: 1357–1366. doi: 10.1016/S0309-1708(02)00061-1 CrossRefGoogle Scholar
  33. Siqueira M, Leuning R, Kolle O, Kelliher FM, Katul GG (2003) Modelling sources and sinks of CO2, H2O and heat within a Siberian pine forest using three inverse methods. Q J R Meteorol Soc 129: 1373–1393. doi: 10.1256/qj.02.108 CrossRefGoogle Scholar
  34. Styles JM, Raupach MR, Farquhar GD, Kolle O, Lawton KA, Brand WA, Werner RA, Jordan A, Schulze ED, Shibistova O, Lloyd J (2002) Soil and canopy CO2, (CO2)-C-13, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus B Chem Phys Meterol 54: 655–676. doi: 10.1034/j.1600-0889.2002.01356.x CrossRefGoogle Scholar
  35. Tiwary A, Fuentes JD, Barr JG, Wang D, Colls JJ (2007) Inferring the source strength of isoprene from ambient concentrations. Environ Modell Softw 22: 1281–1293. doi: 10.1016/j.envsoft.2006.09.002 CrossRefGoogle Scholar
  36. Wang YP, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agric For Meteorol 91: 89–111. doi: 10.1016/S0168-1923(98)00061-6 CrossRefGoogle Scholar
  37. Warland JS, Thurtell GW (2000) A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary-Layer Meteorol 96: 453–471. doi: 10.1023/A:1002656907873 CrossRefGoogle Scholar
  38. Wohlfahrt G (2004) Modelling fluxes and concentrations of CO2, H2O and sensible heat within and above a mountain meadow canopy: a comparison of three Lagrangian models and three parameterisation options for the Lagrangian time scale. Boundary-Layer Meteorol 113: 43–80. doi: 10.1023/B:BOUN.0000037326.40490.1f CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Vanessa Haverd
    • 1
    • 2
  • Ray Leuning
    • 1
  • David Griffith
    • 2
  • Eva van Gorsel
    • 1
  • Matthias Cuntz
    • 3
    • 4
  1. 1.CSIRO Marine and Atmospheric ResearchCanberraAustralia
  2. 2.Department of ChemistryUniversity of WollongongWollongongAustralia
  3. 3.Research School of Biological SciencesCanberraAustralia
  4. 4.Max-Planck-Institut für BiogeochemieJenaGermany

Personalised recommendations