Boundary-Layer Meteorology

, Volume 131, Issue 1, pp 35–51 | Cite as

The Influence of the City of Athens on the Evolution of the Sea-Breeze Front

  • Aggeliki Dandou
  • Maria Tombrou
  • Nikolaos Soulakellis
Original Paper


In the present study, we examine the dynamics of a sea-breeze front and the urban heat island interacting with the heavily urbanized city of Athens. For this reason, simulations were performed with a modified version of the PSU/NCAR Mesoscale Model (MM5), whereby urban features are considered, and the model results were compared with surface routine meteorological data. An unrealistic run was also performed, where the city of Athens was replaced by dry cropland and pasture surface, as in the surrounding area. A delay in the sea-breeze front was found during daytime, together with frictional retardation concerning its penetration, as well as inland displacement of the heat island as the air moved over the city of Athens. During nighttime, the wind speed increased over the lower atmosphere in the city centre due to the enhanced urban heat island.


Heat-island circulation MM5 model Sea-breeze front Urban canopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ado HY (1992) Numerical study of the daytime urban effect and its interaction with the sea-breeze. J Appl Meteorol 31: 1146–1164 doi :10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2CrossRefGoogle Scholar
  2. Angell JK, Pack DH, Dickinson CR, Hoecker WH (1971) Urban influence on nighttime airflow estimated from Tetroon flights. J Appl Meteorol 10: 194–205 doi :10.1175/1520-0450(1971)010<0194:UIONAE> 2.0.CO;2CrossRefGoogle Scholar
  3. Asimakopoulos D, Deligiorgi D, Drakopoulos C, Helmis C, Kokkori K, Lalas D et al (1992) An experimental study of nightime air-pollutant transport over complex terrain in Athens. Atmos Environ 26B: 59–71Google Scholar
  4. Batchvarova E, Gryning S-E (1998) Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment. Atmos Environ 32(12): 2055–2069 doi: 10.1016/S1352-2310(97)00422-6 CrossRefGoogle Scholar
  5. Bornstein RD, Thompson WT (1981) Effects of frictionally retarded sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York City. J Appl Meteorol 20: 843–858 doi :10.1175/1520-0450(1981)020<0843:EOFRSB>2.0.CO;2CrossRefGoogle Scholar
  6. Bossioli E, Tombrou M, Dandou A, Soulakellis N (2007) Gas phase model simulations in the Greater Athens Area (GAA). J Geophys Res 112: D02309 doi: 10.1029/2006JD007185 CrossRefGoogle Scholar
  7. Childs PP, Raman S (2005) Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure Appl Geophys 162:1955–1980. doi: 10.1007/s00024-005-2700-0 CrossRefGoogle Scholar
  8. Dandou A, Tombrou M, Akylas E, Soulakellis N, Bossioli E (2005) Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5). J Geophys Res 110: D10102 doi: 10.1029/2004JD005192 CrossRefGoogle Scholar
  9. Draxler RR (1986) Simulated and observed influence of the nocturnal urban heat island on the local wind field. J Clim Appl Meteorol 25: 1125 doi :10.1175/1520-0450(1986)025<1125:SAOIOT>2.0.CO;2CrossRefGoogle Scholar
  10. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107 doi :10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO;2CrossRefGoogle Scholar
  11. Dudhia J (1996) A multi-layer soil temperature model for MM5. Preprints, the 6th PSU/NCAR Meso-scale Model users, Workshop, Boulder CO, July, National Centre for Atmospheric Research, pp 49–50Google Scholar
  12. Flassak T, Moussiopoulos N (1988) An application of an efficient non-hydrostatic mesoscale model. Boundary-Layer Meteorol 41: 135–147 doi: 10.1007/BF00120436 CrossRefGoogle Scholar
  13. Freitas ED, Rozoff CM, Cotton WR, Silva Dias PL (2007) Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Säo Paulo, Brazil. Boundary-Layer Meteorol 122: 43–65 doi: 10.1007/s10546-006-9091-3 CrossRefGoogle Scholar
  14. Gedzelman SD, Austin S, Cermak R, Stefano N, Partridge S, Quesenberry S et al (2003) Mesoscale aspects of the Urban Heat Island around New York City. Theor Appl Climatol 75: 29–42Google Scholar
  15. Gilliam RC, Hogrefe C, Rao ST (2006) New methods for evaluating meteorological models used in air quality applications. Atmos Environ 40: 5073–5086 doi: 10.1016/j.atmosenv.2006.01.023 CrossRefGoogle Scholar
  16. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121: 764–787 doi :10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2CrossRefGoogle Scholar
  17. Grell GA, Dudhia J, Stauffer D (1994) A description of the fifth-generation Penn state/NCAR mesoscale model (MM5). NCAR technical note, NCAR/TN-398 +STR, National Centre for Atmospheric Sciences, Boulder, CO, 138 ppGoogle Scholar
  18. Grossi P, Thunis P, Martilli A, Clappier A (2000) Effect of sea breeze on air pollution in the greater Athens area. Part II: Analysis of different emission scenarios. J Appl Meteorol 39: 563–575 doi :10.1175/1520-0450(2000)039<0563:EOSBOA>2.0.CO;2Google Scholar
  19. Helmis CG, Papadopoulos KH, Kalogiros JA, Soilemes AT, Asimakopoulos DN (1995) Influence of background flow on evolution of Saronic gulf sea breeze. Atmos Environ 29: 3689–3701 doi: 10.1016/1352-2310(95)00008-M CrossRefGoogle Scholar
  20. Hong SY, Pan HL (1996) Nonlocal Boundary-Layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124: 2322–2339 doi :10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2CrossRefGoogle Scholar
  21. Kallos G, Kassomenos P, Pielke RA (1993) Synoptic and mesoscale weather conditions during air pollution episodes in Athens. Boundary-Layer Meteorol 62: 163–184 doi: 10.1007/BF00705553 CrossRefGoogle Scholar
  22. Khan SM, Simpson RW (2001) Effect of a heat island on the meteorology of complex urban airshed. Boundary-Layer Meteorol 100: 487–506 doi: 10.1023/A:1019284332306 CrossRefGoogle Scholar
  23. Kotroni V, Kallos G, Lagouvardos K, Varinou M, Walko R (1999) Numerical simulations of the meteorological and dispersion conditions during an air pollution episode over Athens, Greece. J Appl Meteorol 38: 432–447 doi :10.1175/1520-0450(1999)038<0432:NSOTMA>2.0.CO;2CrossRefGoogle Scholar
  24. Kusaka H, Kimura F, Hirakuchi H, Mizutori M (2000) The effects of land-use alteration on the sea breeze and daytime heat island in Tokyo metropolitan area. J Meteorol Soc Jpn 78: 405–420Google Scholar
  25. Lee DO (1979) The influence of atmospheric stability and the urban heat island on urban-rural wind speed differences. Atmos Environ 13: 1175–1180 doi: 10.1016/0004-6981(79)90042-8 CrossRefGoogle Scholar
  26. Loose T, Bornstein RD (1977) Observations of mesoscale effects on frontal movement through and urban area. Mon Wea Rev 105: 563–571 doi :10.1175/1520-0493(1977)105<0563:OOMEOF>2.0.CO;2CrossRefGoogle Scholar
  27. Martilli A (2003) A two-dimensional numerical study of the impact of a city on atmospheric circulation and pollutant dispersion in a coastal environment. Boundary-Layer Meteorol 108: 91–119 doi: 10.1023/A:1023044100064 CrossRefGoogle Scholar
  28. Martilli A, Roulet Y-A, Junier M, Kirchner F, Rotach MW, Clappier A (2003) On the impact of urban surface exchange parameterizations on air quality simulations: the Athens case. Atmos Environ 37: 4217–4231 doi: 10.1016/S1352-2310(03)00564-8 CrossRefGoogle Scholar
  29. Melas D, Enger L (1993) A numerical study of flow in Athens area using MIUU model. Environ Softw 8: 55–63 doi: 10.1016/0266-9838(93)90008-6 CrossRefGoogle Scholar
  30. Melas D, Ziomas IC, Klemm O, Zerefos CS (1998) Anatomy of the sea-breeze circulation in Athens area under weak large-scale ambient winds. Atmos Environ 32(12): 2223–2237 doi: 10.1016/S1352-2310(97)00420-2 CrossRefGoogle Scholar
  31. Moussiopoulos N, Flassak T, Sahm P, Berlowitz D (1993) Simulations of the wind field in Athens with the nonhydrostatic mesoscale model MEMO. Environ Softw 8: 29–42 doi: 10.1016/0266-9838(93)90006-4 CrossRefGoogle Scholar
  32. Moussiopoulos N, Sahm P, Kessler C (1995) Numerical simulation of photochemical smog formation in Athens, Greece—a case study. Atmos Environ 29: 3619–3632 doi: 10.1016/1352-2310(95)00199-9 CrossRefGoogle Scholar
  33. Novak DR, Colle BA (2006) Observations of multiple sea breeze boundaries during an unseasonably warm day in Metropolitan New York City. Bull Amer Meteorol Soc 87: 169–174 doi: 10.1175/BAMS-87-2-169 CrossRefGoogle Scholar
  34. Ohashi Y, Kida H (2002) Local circulations developed an the vicinity of both coastal and inland urban areas: a numerical study with a mesoscale atmospheric model. J Appl Meteorol 41: 30–45 doi :10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2CrossRefGoogle Scholar
  35. Pilinis C, Kassomenos P, Kallos G (1993) Modeling of photochemical pollution in Athens, Greece. Application of the RAMS-CALGRID modelling system. Atmos Environ 27B: 353–370Google Scholar
  36. Svensson G (1998) Model simulations of the air quality in Athens, Greece, during the MEDCAPHOT-TRACE campaign. Atmos Environ 32(12): 2239–2268 doi: 10.1016/S1352-2310(97)00427-5 CrossRefGoogle Scholar
  37. Thompson WT, Holt T, Pullen J (2007) Investigation of a sea breeze front in an urban environment. Quart J Roy Meteorol Soc 133: 579–594 doi: 10.1002/qj.52 CrossRefGoogle Scholar
  38. Troen I, Mahrt L (1986) A simple model for the atmospheric Boundary-Layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148 doi: 10.1007/BF00122760 CrossRefGoogle Scholar
  39. Varvayanni M, Catsaros N, Konte P, Statharas J, Bartzis JG (1998) Development and interaction of the thermally driven flows over Attiki peninsula under northerly background wind—a case study. Atmos Environ 32(12): 2291–2311 doi: 10.1016/S1352-2310(97)00425-1 CrossRefGoogle Scholar
  40. Wong KK, Dirks RA (1978) Mesoscale perturbations on airflow in the urban mixed layer. J Appl Meteorol 17: 677–688 doi :10.1175/1520-0450(1978)017<0677:MPOAIT>2.0.CO;2CrossRefGoogle Scholar
  41. Yoshikado H (1990) Numerical experiment of the urban effect in a coastal region on the sea breeze and the pollutant diffusion (in Japanese). Tenki 37: 681–688Google Scholar
  42. Yoshikado H (1992) Numerical study of the daytime urban effect and its interaction with the sea breeze. J Appl Meteorol 31: 1146–1164 doi :10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2CrossRefGoogle Scholar
  43. Yoshikado H (1994) Interaction of the sea-breeze with urban heat islands of different sizes and locations. J Meteorol Soc Jpn 72: 139–143Google Scholar
  44. Yoshikado H, Tsuchida M (1996) High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay. J Appl Meteorol 35: 1804–1814 doi :10.1175/1520-0450(1996)035<1804:HLOWAP>2.0.CO;2CrossRefGoogle Scholar
  45. Ziomas IC (1998) The Mediterranean campaign of photochemical tracers-transport and chemical evolution (MED-CAPHOT-TRACE): an outline. Atmos Environ 32:2045–2053. doi: 10.1016/S1352-2310(97)00413-5 CrossRefGoogle Scholar
  46. Ziomas IC, Suppan P, Rappengluck B, Balis D, Tzoumaka P, Melas D et al (1995) A contribution to the study of photochemical smog in the Greater Athens area. Beitr Phys Atmos 68: 191–20Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aggeliki Dandou
    • 1
  • Maria Tombrou
    • 1
  • Nikolaos Soulakellis
    • 2
  1. 1.Faculty of Physics, Department of Environmental Physics and Meteorology, Laboratory of MeteorologyNational and Kapodistrian University of AthensAthensGreece
  2. 2.Department of GeographyUniversity of the AegeanMytileneGreece

Personalised recommendations