Boundary-Layer Meteorology

, Volume 128, Issue 3, pp 445–457 | Cite as

Variation of the Sectional Drag Coefficient of a Group of Buildings with Packing Density

  • J. L. Santiago
  • O. Coceal
  • A. Martilli
  • S. E. Belcher
Original Paper

Abstract

Reynolds-averaged Navier–Stokes (RANS) simulations of turbulent flow over groups of buildings with different packing densities are reported. The results for a selected packing density are compared with direct numerical simulations (DNS) previously validated against wind-tunnel data. The present study is focused on average properties of the flow, especially on the drag coefficients, and is a first attempt to provide information on these parameters (their values are not generally known) for a range of packing densities, for a given staggered arrangement of cubes using RANS methods. However, some of the limitations of RANS have come to light. Hence, it is recommended that such simulations are ‘calibrated’ against experimental or DNS data, as is done here.

Keywords

Drag coefficient Packing densities Reynolds-averaged Navier–Stokes (RANS) simulations Staggered arrangement Urban canopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Bound-Lay Meteorol 104: 229–259. doi:10.1023/A:1016060103448 CrossRefGoogle Scholar
  2. Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube array of different packing densities. J Wind Eng Indust Aero 95: 715–740. doi:10.1016/j.jweia.2007.01.004 CrossRefGoogle Scholar
  3. Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Quart J Roy Meteorol Soc 130: 1349–1372. doi:10.1256/qj.03.40 CrossRefGoogle Scholar
  4. Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound-Lay Meteorol 121: 491–519. doi:10.1007/s10546-006-9076-2 CrossRefGoogle Scholar
  5. Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589: 375–409. doi:10.1017/S002211200700794X CrossRefGoogle Scholar
  6. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292, doi :10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2Google Scholar
  7. Lien FS, Yee E (2004) Numerical modelling of the turbulent flow developing within and over a 3-D building array, part I: a high-resolution reynolds-averaged navier Stokes approach. Bound-Lay Meteorol 112: 427–466. doi:10.1023/B:BOUN.0000030654.15263.35 CrossRefGoogle Scholar
  8. Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32: 1857–1864. doi:10.1016/S1352-2310(97)00403-2 CrossRefGoogle Scholar
  9. Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Bound-Lay Meteorol 97: 25–45. doi:10.1023/A:1002785830512 CrossRefGoogle Scholar
  10. Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. Bound-Lay Meteorol 104: 261–304. doi:10.1023/A:1016099921195 CrossRefGoogle Scholar
  11. Martilli A, Santiago JL (2007) CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Bound-Lay Meteorol 122: 635–654. doi:10.1007/s10546-006-9124-y CrossRefGoogle Scholar
  12. Murakami S, Mochida A, Hashi Y (1990) Examining the k-\({\varepsilon}\) model by means of a wind tunnel test and large eddy simulation of the turbulence structure around a cube. J Wind Eng Indust Aero 35: 87–100CrossRefGoogle Scholar
  13. Murakami S (1993) Comparison of various turbulence models applied to a bluff body. J Wind Eng Indust Aero 46(47): 21–36. doi:10.1016/0167-6105(93)90112-2 CrossRefGoogle Scholar
  14. Santiago JL, Martilli A, Martin F (2007) CFD simulation of airflow over a regular array of cubes. Part I: three-dimensional simulation of the flow and validation with wind tunnel measurements. Bound-Lay Meteorol 122: 609–634. doi:10.1007/s10546-006-9123-z CrossRefGoogle Scholar
  15. Xie Z, Castro IP (2006) LES and RANS for turbulent flow over Arrays of wall-mounted obstacles. Flow Turbul Combust 76: 291–312. doi:10.1007/s10494-006-9018-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. L. Santiago
    • 1
  • O. Coceal
    • 2
  • A. Martilli
    • 1
  • S. E. Belcher
    • 2
  1. 1.Environment DepartmentResearch Center for Energy, Environment and Technology (CIEMAT)MadridSpain
  2. 2.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations