Boundary-Layer Meteorology

, Volume 128, Issue 3, pp 357–379 | Cite as

Model Simulations of the Boundary-Layer Evolution over an Arid Andes Valley

  • Inge Bischoff-Gauß
  • Norbert Kalthoff
  • Samiro Khodayar
  • Melitta Fiebig-Wittmaack
  • Sonia Montecinos
Original Paper


The boundary layer of the Elqui valley in the arid north of Chile exhibits several interesting phenomena, such as a very shallow convective boundary layer (CBL) during the day. In the morning, warming is observed in and above the CBL, while the humidity decreases in the CBL. At midday, in and above the CBL of the valley, the temperature stagnates. In the afternoon in the CBL the temperature decreases and humidity increases, although the latent heat flux is very low. Because the characteristic features of the valley atmosphere are hard to interpret from observations alone, model simulations were applied. The simulations indicate that all components of the budget equations, i.e. the turbulent flux divergences, advection via the sea breeze, the upvalley and upslope wind systems, as well as subsidence, contribute to the evolution of the valley atmosphere.


Elqui valley Heat budget Moisture budget Sea breeze Valley winds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian G, Fiedler F (1991) Simulation of unstationary wind- and temperature fields over complex terrain and comparison with observations. Contr Phys Atmos 64: 27–48Google Scholar
  2. Barry RG (1992) Mountain weather and climate. Routledge, London, p 402 ppGoogle Scholar
  3. Bischoff-Gauß I, Kalthoff N, Fiebig-Wittmaack M (2006) The influence of a storage lake in the arid Elqui valley in Chile on local climate. Theor Appl Climatol 85: 227–241CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric boundary-layer. J Atmos Sci 28: 181–189CrossRefGoogle Scholar
  5. Deardorff JW (1972) Parameterization of the planetary boundary layer for use in general circulation models. Mon Wea Rev 100: 93–106CrossRefGoogle Scholar
  6. Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7: 81–106Google Scholar
  7. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 83: 1889–1903CrossRefGoogle Scholar
  8. Degrazia GA (1988) Anwendung von Ähnlichkeitsverfahren auf die turbulente Diffusion in der konvektiven und stabilen Grenzschicht (Application of the similarity procedure to turbulent diffusion in the convective and stable boundary layer). PhD thesis, Universität KarlsruheGoogle Scholar
  9. de Wekker SFJ, Steyn DG, Nyeki S (2004) A comparison of aerosol-layer and convective boundary-layer structure over a mountain range during STAAARTE ’97. Boundary-Layer Meteorol 113: 249–271CrossRefGoogle Scholar
  10. Fiedler F (1993) Development of meteorological computer models. Interdiscip Sci Rev 18: 192–198Google Scholar
  11. Fiedler F, Bischoff-Gauß I, Kalthoff N, Adrian G (1999) Modeling of the transport and diffusion of a tracer in the Freiburg-Schauinsland area. J Geophys Res 105(D1): 1599–1610CrossRefGoogle Scholar
  12. Freytag C (1985) MERKUR results: aspects of the temperature field and the energy budget in a large alpine valley during mountain and valley wind. Contr Atmos Phys 58: 458–476Google Scholar
  13. Gamo M (1996) Thickness of the dry convection and large-scale subsidence above deserts. Boundary-Layer Meteorol 79: 265–278CrossRefGoogle Scholar
  14. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316 ppGoogle Scholar
  15. Hennemuth B (1985) Temperature field and energy budget of a small alpine valley. Contr Atmos Phys 58: 545–559Google Scholar
  16. Hennemuth B, Neureither I (1986) Das Feuchtefeld in einem alpinen Endtal. Meteorol Rdsch 39: 233–239Google Scholar
  17. Kalthoff N, Horlacher V, Corsmeier U, Volz-Thomas A, Kolahgar B, Geiß H, Möllmann-Coers M, Knaps A (2000) Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J Geophys Res 105: 1585–1597CrossRefGoogle Scholar
  18. Kalthoff N, Bischoff-Gauß I, Fiebig-Wittmaack M, Fiedler F, Thürauf J, Novoa E, Pizarro C, Castillo R, Gallardo L, Rondanelli R, Kohler M (2002) Mesoscale wind regimes in Chile at 30°S. J Appl Meteorol 41: 953–970CrossRefGoogle Scholar
  19. Kalthoff N, Fiebig-Wittmaack M, Meißner C, Kohler M, Uriarte M, Bischoff-Gauß I (2006) The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J Arid Environ 65: 420–443CrossRefGoogle Scholar
  20. Khodayar S, Kalthoff N, Fiebig-Wittmaack M, Kohler M (2008) Evolution of the atmospheric boundary layer structure of an arid Andes valley. Meteorol Atmos Phys 99: 181–198CrossRefGoogle Scholar
  21. Klemp JB, Durran DR (1983) An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon Wea Rev 111: 430–444CrossRefGoogle Scholar
  22. Kossmann M, Corsmeier U, de Wekker SFJ, Fiedler F, Kalthoff N, Güsten H, (1999) Observation of handover processes between the atmospheric boundary layer and the free troposphere over mountainous terrain. Contrib Atmos Phys 72: 329–350Google Scholar
  23. Kossmann M, Sturman AP, Zawar-Reza P, McGowan HA, Oliphant AJ, Owens IF, Spronken-Smith RA (2002) Analysis of the wind field and heat budget in an alpine lake basin during summertime fair weather conditions. Meteorol Atmos Phys 81: 27–52CrossRefGoogle Scholar
  24. Kuwagata T, Kimura F (1997) Daytime boundary layer evolution in a deep valley. Part II: Numerical simulation of the cross-valley circulation. J Appl Meteorol 36: 883–895Google Scholar
  25. Kuwagata T, Kondo J, Sumioka M (1994) Thermal effect of the sea breeze on the structure of the boundary layer and the heat budget over land. Boundary-Layer Meteorol 67: 119–144CrossRefGoogle Scholar
  26. McGowan HA, Sturman AP (2005) Atmospheric boundary layer development over a narrow coastal plain during onshore flow. Meteorol Z 14: 3–14CrossRefGoogle Scholar
  27. Miller A (1976) The climate of Chile. In: Schwerdtfeger W(eds) World survey of climatology. Climates of Central and South America, Vol 12. Elsevier, Amsterdam, pp 113–145Google Scholar
  28. Neininger B (1982) Mesoklimatische Messungen im Oberwallis. Ann Meteorol N F 19: 105–107Google Scholar
  29. Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds—a conceptual model and numerical simulations. Boundary-Layer Meteorol 104: 73–97CrossRefGoogle Scholar
  30. Olivares S, Squeo F (1999) Patrones fenológicos en especies arbustivas del desierto costero del norte-centro de Chile. Revista Chilena de Historia Natural 72: 353–370Google Scholar
  31. Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21: 151–269CrossRefGoogle Scholar
  32. Rutllant J, Ulriksen P (1979) Boundary-layer dynamics of the extremely arid northern part of Chile: the Antofagasta field experiment. Boundary-Layer Meteorol 17: 41–55CrossRefGoogle Scholar
  33. Schädler G, Kalthoff N, Fiedler F (1990) Validation of a model for heat, mass, and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Contr Phys Atmos 63: 85–100Google Scholar
  34. Schemenauer RS, Cereceda P, Carvjal N (1987) Measurements of fog water deposition and their relationships to terrain features. J Clim Appl Meteorol 26: 1285–1291CrossRefGoogle Scholar
  35. Schemenauer RS, Fuenzalida PH, Cereda P (1988) A neglected water resource: the Camanchaca of South America. Bull Amer Meteor Soc 69: 138–147CrossRefGoogle Scholar
  36. Schwerdtfeger W (1976) Introduction. In: Schwerdtfeger W(eds) World survey of climatology. Climates of Central and South America, Vol 12. Elsevier, Amsterdam, pp 1–12Google Scholar
  37. Squeo F, Osorio R, Arancio G (1994) Flora de Los Andes de Coquimbo: Cordillera de Doña Ana. Ediciones Universidad de La Serena, La SerenaGoogle Scholar
  38. Steinacker R (1994) Area-height distribution of a valley and its relation to the valley wind. Contr Atmos Phys 57: 64–71Google Scholar
  39. Vergeiner I, Dreiseitl E (1987) Valley winds and slope winds—observations and elementary thoughts. Meteorol Atmos Phys 36: 264–286CrossRefGoogle Scholar
  40. Warner T (2004) Desert meteorology. Cambridge University Press, Cambridge, p 595 ppGoogle Scholar
  41. Weigel AP, Rotach MW (2004) Flow structure and turbulent characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart J Roy Meteorol Soc 130: 2605–2627CrossRefGoogle Scholar
  42. Weigel A, Chow F, Rotach M, Street RL, Xue M (2006) High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: flow structure and heat budgets. J Appl Meteorol 45: 87–107CrossRefGoogle Scholar
  43. Weischet W (1996) Regionale Klimatologie Teil 1, Die Neue Welt: Amerika, Neuseeland, Australien. Teubner, StuttgartGoogle Scholar
  44. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In Blumen (ed) Atmospheric processes over complex terrain. Meteorological monographs 23. American Meteorological Society, BostonGoogle Scholar
  45. Whiteman CD (2000) Mountain meteorology. Oxford University Press, Oxford, p 355 ppGoogle Scholar
  46. Whiteman CD, McKee TB, Doran JC (1996) Boundary layer evolution within a canyonland basin, Part I: mass, heat, and moisture budgets from observations. J Appl Meteorol 35: 2145–2161CrossRefGoogle Scholar
  47. Whiteman CD, Zhong S, Bian X, Fast JD, Doran JC (2000) Boundary layer evolution and regional-scale diurnal circulations over the Mexico Basin and Mexican plateau. J Geophys Res 105: 10081–10102CrossRefGoogle Scholar
  48. Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32: 361–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Inge Bischoff-Gauß
    • 1
  • Norbert Kalthoff
    • 2
  • Samiro Khodayar
    • 2
  • Melitta Fiebig-Wittmaack
    • 3
    • 4
  • Sonia Montecinos
    • 4
  1. 1.Institute for Scientific ComputingKarlsruhe Research CentreKarlsruheGermany
  2. 2.Institute for Meteorology and Climate ResearchKarlsruhe Research Centre/University of KarlsruheKarlsruheGermany
  3. 3.Departamento de MatemáticaUniversidad de La SerenaLa SerenaChile
  4. 4.Centro de Estudios Avanzados en Zonas Aridas (CEAZA)La SerenaChile

Personalised recommendations