Advertisement

Boundary-Layer Meteorology

, Volume 128, Issue 2, pp 173–189 | Cite as

Effects of Roll Vortices on Turbulent Fluxes in the Hurricane Boundary Layer

  • Jun A. Zhang
  • Kristina B. Katsaros
  • Peter G. Black
  • Susanne Lehner
  • Jeffrey R. French
  • William M. Drennan
Original Paper

Abstract

Boundary-layer secondary circulations or ‘roll vortices’ can have a significant influence on the turbulent exchange of momentum, sensible heat and moisture throughout the hurricane boundary layer. In this study, analyses of data from a WP-3D aircraft of the National Oceanic and Atmospheric Administration (NOAA) are presented. As part of the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-hurricane experiment sponsored through the Office of Naval Research and NOAA’s annual hurricane research program, flights were conducted to investigate energy exchange across the air–sea interface. We present the first in-situ aircraft-based observations of rolls in the hurricane boundary layer and investigate their influence on energy and momentum exchange. The rolls detected in Hurricane Isidore (year 2002) have a characteristic wavelength of about 900 m, in good agreement with analyses of data from a synthetic aperture radar image captured by the Canadian Space Agency’s RADARSAT satellite in the same storm. Our analyses of the airborne data suggest that roll vortices may be a significant factor modulating the air–sea momentum exchange.

Keywords

Air–sea interaction Hurricane boundary layer Roll vortices Turbulent fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpers W, Brümmer B (1994) Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J Geophys Res 99: 12613–12621CrossRefGoogle Scholar
  2. Banner ML, Chen W, Walsh EJ, Jensen JB, Lee S, Fandry C (1999) The Southern Ocean Waves Experiment. Part I: overview and mean results. J Phys Oceanogr 29: 2130–2145Google Scholar
  3. Black PG, D’Asaro E, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air-sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer experiment. Bull Amer Meteorol Soc 88: 357–374CrossRefGoogle Scholar
  4. Brooks IM, Rogers DP (1997) Aircraft observations of boundary layer rolls off the coast of California. J Atmos Sci 54: 1834–1849CrossRefGoogle Scholar
  5. Brown RA (1970) Secondary flow model for the planetary boundary layer. J Atmos Sci 27: 742–757CrossRefGoogle Scholar
  6. Brown RA (1980) Longitudinal instabilities and secondary flows in the planetary boundary layer: a review. Rev Geophys Space Phys 18: 683–697CrossRefGoogle Scholar
  7. Brümmer B (1999) Roll and cell convection in winter-time arctic cold-air outbreaks. J Atmos Sci 56: 2613–2636CrossRefGoogle Scholar
  8. Chen W, Banner ML, Walsh EJ, Jensen JB, Lee S (2001) The Southern Ocean Waves Experiment. Part II: sea surface response to wind speed and wind stress variations. J Phys Oceanogr 31: 174–198Google Scholar
  9. Chou S-H, Ferguson MD (1991) Heat fluxes and roll circulations over the Western Gulf Stream during an intense cold-air outbreak. Boundary-Layer Meteorol 55: 255–282CrossRefGoogle Scholar
  10. Donelan MA (1990) Air-sea interaction. In: LeMéhauté B, Hanes D (eds) The sea, vol 9. Wiley-Interscience, pp 239–292Google Scholar
  11. Drennan WM, Shay LK (2006) On the variability of the fluxes of momentum and sensible heat. Boundary-Layer Meteorol 119: 81–107CrossRefGoogle Scholar
  12. Drennan WM, Zhang JA, French JR, McCormick C, Black PG (2007) Turbulent fluxes in the hurricane boundary layer, Part II: latent heat fluxes. J Atmos Sci 64: 1103–1115CrossRefGoogle Scholar
  13. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65: 215–248CrossRefGoogle Scholar
  14. Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24: 395–458CrossRefGoogle Scholar
  15. Foster RC (2005) Why rolls are prevalent in the hurricane boundary layer. J Atmos Sci 62: 2647–2661CrossRefGoogle Scholar
  16. French JR, Drennan WM, Zhang JA, Black PG (2007) Turbulent fluxes in the hurricane boundary layer, Part I: Momentum flux. J Atmos Sci 63: 1089–1102CrossRefGoogle Scholar
  17. Friedman KS, Vachon PW, Katsaros KB (2004) Mesoscale storm systems. In: Jackson CR, Apel JR (eds) Synthetic aperture radar marine users’ manual. NOAA, Washington, DC, pp 331–340Google Scholar
  18. Friehe CA, Khelif D (1992) Fast-response aircraft temperature sensors. J Atmos Oceanic Technol 9: 784–795CrossRefGoogle Scholar
  19. Friehe CA, Shaw WJ, Rogers DP, Davidson KL, Large WG, Stage SA, Crescenti GH, Khalsa SJS, Greenhut GK, Li F (1991) Air-sea fluxes and surface turbulence around a sea surface temperature front. J Geophys Res 96: 8593–8609CrossRefGoogle Scholar
  20. Glendening JW (1996) Linear eddy features under strong shear conditions. J Atmos Sci 53: 3430–3449CrossRefGoogle Scholar
  21. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. Siam J Math Anal 15: 723–736CrossRefGoogle Scholar
  22. Horstmann J, Graber HC, Koch W, Iris S (2005) Investigation of SAR wind field retrieval with respect to hurricane winds. In: Proceedings of 2005 IEEE international geoscience and remote sensing symposium vol 6, 25–29 July 2005, pp 4018–4021Google Scholar
  23. Katsaros KB, Vachon PW, Black PG, Dodge PP, Uhlhorn EW (2000) Wind fields from SAR: Could they improve our understanding of storm dynamics?. Johns Hopkins APL Tech Dig 21: 86–93Google Scholar
  24. Katsaros KB, Vachon PW, Liu WT, Black PG (2002) Microwave remote sensing of tropical cyclones from space. J Oceanogr 58: 137–151CrossRefGoogle Scholar
  25. Khelif D, Burns SP, Friehe CA (1999) Improved wind measurements on research aircraft. J Atmos Oceanic Technol 16: 860–875CrossRefGoogle Scholar
  26. Koch W (2004) Directional analysis of SAR images aiming at wind direction. IEEE Trans Geosci Remote Sens 42: 702–710CrossRefGoogle Scholar
  27. Laur H, Bally P, Meadows P, Schättler SJB, Lopinto E (1998) Derivation of the backscattering coefficient_0 in ESA ERS- 1/2.SAR.PRI data products. Technical Note ES-TN-RSPM- HL09, issue 2, Revision 5b, ESA, Frascati, Italy, 47 ppGoogle Scholar
  28. Lehner S, Horstmann J, Koch W, Rosenthal W (1998) Mesoscale wind measurements using recalibrated ERS SAR images. J Geophys Res 103: 7847–7856CrossRefGoogle Scholar
  29. Lehner S, Schulz-Stellenfleth J, Schättler JBH, Breit H, Horstmann J (2000) Wind and wave measurements using complex ERS-2 wave mode data. IEEE Trans Geosci Remote Sens 38: 2246–2257CrossRefGoogle Scholar
  30. LeMone MA (1973) The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J Atmos Sci 30: 1077–1091CrossRefGoogle Scholar
  31. LeMone MA (1976) Modulation of turbulent energy by longitudinal rolls in an unstable boundary layer. J Atmos Sci 33: 1308–1320CrossRefGoogle Scholar
  32. Levy G, Brown RA (1998) Detecting planetary boundary layer rolls from SAR. In: Brown RA (eds) Remote sensing of the Pacific Ocean by satellites. Earth Ocean and Space, pp 128–134Google Scholar
  33. Li X, Pichel WG, He M, Wu SY, Friedman KS, Clemente-Colon P, Zhao C (2002) Observations of hurricane-generated ocean swell refraction at the Gulf Stream north wall with the RADARSAT-1 synthetic aperture radar. IEEE Trans Geosci Remote Sens 40: 2131–2141CrossRefGoogle Scholar
  34. Lilly DK (1966) On the instability of Ekman Boundary Flow. J Atmos Sci 23: 481–494CrossRefGoogle Scholar
  35. Lorsolo S, Schroeder JL, Dodge P, Marks F (2008) An observational study of hurricane boundary layer small-scale coherent structures. Mon Wea Rev (in press)Google Scholar
  36. Morrison I, Businger S, Marks F, Dodge P, Businger JA (2005) An observational case for the prevalence of roll vortices in the hurricane boundary layer. J Atmos Sci 62: 2662–2673CrossRefGoogle Scholar
  37. Mourad PD (1996) Inferring multiscale structure in atmospheric turbulence using satellite-based synthetic aperture radar. J Geophys Res 101: 18433–18449CrossRefGoogle Scholar
  38. Mourad PD, Walter BA (1996) Viewing a cold air outbreak using satellite-based synthetic aperture radar and advanced very high resolution radiometer imagery. J Geophys Res 101: 16391–16400CrossRefGoogle Scholar
  39. Mourad PD, Thompson DR, Vandemark D (2000) Extracting fine-scale wind fields from synthetic aperture radar images of the ocean surface. Johns Hopkins APL Tech Dig 21: 108–115Google Scholar
  40. Müller G, Brümmer B, Alpers W (1999) Roll convection within an Arctic cold-air outbreak: interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon Wea Rev 127: 363–380CrossRefGoogle Scholar
  41. Nolan DS (2005) Instabilities in hurricane-like boundary layers. Dyn Atmos Oceans 40: 209–236CrossRefGoogle Scholar
  42. Pasch RJ, Lawrence MB, Avila LA, Beven JL, Franklin JL, Stewart SR (2004) Atlantic hurricane season of 2002. Mon Wea Rev 132: 1829–1859CrossRefGoogle Scholar
  43. Savtchenko S (1999) Effect of large eddies on atmospheric surface layer turbulence and the underlying wave field. J Geophys Res 104: 3149–3157CrossRefGoogle Scholar
  44. Sikora TD, Ufermann S (2004) Marine atmospheric boundary layer cellular convection and longitudinal roll vortices. In: Jackson CR, Apel JR (eds) Synthetic aperture radar marine user’s manual. NOAA, Washington, DC, pp 321–330Google Scholar
  45. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666 ppGoogle Scholar
  46. Uhlhorn EW, Black PG, Franklin JL, Goodberlet M, Carswell J, Goldstein AS (2007) Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon Wea Rev 9: 3070–3085CrossRefGoogle Scholar
  47. Vachon PW, Katsaros KB (1999) Atmospheric cyclones from spaceborne SAR. Backscatter 10: 14–19Google Scholar
  48. Vandemark D, Mourad PD, Bailey SA, Crawford TL, Vogel CA, Sun J, Chapron B (2001) Measured changes in ocean surface roughness due to atmospheric boundary layer rolls. J Geophys Res 106: 4639–4654CrossRefGoogle Scholar
  49. Weckwerth TM, Wilson JW, Wakimoto RM, Crook NA (1997) Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics. Mon Wea Rev 125: 505–526CrossRefGoogle Scholar
  50. Wurman J, Winslow J (1998) Intense sub-kilometer boundary layer rolls in Hurricane Fran. Science 280: 555–557CrossRefGoogle Scholar
  51. Young GS, Kristovich DAR, Hjelmfelt MR, Foster RC (2002) Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull Amer Meteorol Soc 83: 997–1001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jun A. Zhang
    • 1
    • 2
  • Kristina B. Katsaros
    • 3
    • 4
  • Peter G. Black
    • 2
    • 5
  • Susanne Lehner
    • 6
  • Jeffrey R. French
    • 7
  • William M. Drennan
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric Science, Division of Applied Marine PhysicsUniversity of MiamiMiamiUSA
  2. 2.Hurricane Research DivisionNational Oceanographic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML)MiamiUSA
  3. 3.National Oceanographic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML)MiamiUSA
  4. 4.FreelandUSA
  5. 5.Science Applications International Corporation at Naval Research LaboratoryMontereyUSA
  6. 6.German Aerospace Centre (DLR)OberpfaffenhofenGermany
  7. 7.Department of Atmospheric ScienceUniversity of WyomingLaramieUSA

Personalised recommendations