Advertisement

Boundary-Layer Meteorology

, Volume 127, Issue 3, pp 449–467 | Cite as

Eddy-Covariance Flux Measurements in the Complex Terrain of an Alpine Valley in Switzerland

  • Rebecca Hiller
  • Matthias J. Zeeman
  • Werner Eugster
Original Paper

Abstract

We measured the surface energy budget of an Alpine grassland in highly complex terrain to explore possibilities and limitations for application of the eddy-covariance technique, also for CO2 flux measurements, at such non-ideal locations. This paper focuses on the influence of complex terrain on the turbulent energy measurements of a characteristic high Alpine grassland on Crap Alv (Alp Weissenstein) in the Swiss Alps during the growing season 2006. Measurements were carried out on a topographic terrace with a slope of 25 inclination. Flux data quality is assessed via the closure of the energy budget and the quality flag method used within the CarboEurope project. During 93% of the time the wind direction was along the main valley axis (43% upvalley and 50% downvalley directions). During the transition times of the typical twice daily wind direction changes in a mountain valley the fraction of high and good quality flux data reached a minimum of ≈50%, whereas during the early afternoon ≈70% of all records yielded good to highest quality (CarboEurope flags 0 and 1). The overall energy budget closure was 74 ± 2%. An angular correction for the shortwave energy input to the slope improved the energy budget closure slightly to 82 ± 2% for afternoon conditions. In the daily total, the measured turbulent energy fluxes are only underestimated by around 8% of net radiation. In summary, our results suggest that it is possible to yield realistic energy flux measurements under such conditions. We thus argue that the Crap Alv site and similar topographically complex locations with short-statured vegetation should be well suited also for CO2 flux measurements.

Keywords

Alpine grasslands CarboEurope project Complex terrain Energy budget closure Footprint model Quality control Valley wind system 

References

  1. Baldocchi D (2003) Assessing the eddy-covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4): 479–492CrossRefGoogle Scholar
  2. Barr AG, King KM, Gillespie TJ, Hartog G, Neumann HH (1994) A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Boundary-Layer Meteorol 71: 21–41CrossRefGoogle Scholar
  3. Bearth P, Heierli H, Roesli F, Gesellschaft SN (1987) Geologischer Atlas der Schweiz, 1237 Albulapass, Atlasblatt 82. Bundesamt für Landestopographie, BernGoogle Scholar
  4. Caflisch C (1954) Weissenstein am Albula: Crap Alv 1654–1954. Bündner Monatsblatt, Zeitschrift für bündnerische Geschichte, Landes- und Volkskunde 105(2): 65–111Google Scholar
  5. Eugster W, Senn W (1995) A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol 74(4): 321–340CrossRefGoogle Scholar
  6. Eugster W, Kling G, Jonas T, McFadden JP, Wüest A, MacIntyre S, Chapin FS III (2003) CO2 exchange between air and water in an arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. J Geophys Res 108(D12):4362–4380. doi: 10.1029/2002JD002653 CrossRefGoogle Scholar
  7. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78(1): 83–105CrossRefGoogle Scholar
  8. Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt G (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorol 122(2): 397–416CrossRefGoogle Scholar
  9. Kaimal J, Wyngaard J, Izumi Y, Cote O (1972) Spectral characteristics of surface-layer turbulence. Quart J Roy Meteorol Soc 98(417): 563–589CrossRefGoogle Scholar
  10. Keller P (2006) Vegetationskundliche Untersuchungen und Ertrag der Grünlandflächen im Gebiet der ETH-Forschungsstation Alp Weissenstein GR. Master’s thesis, Geographical Institute, University of Zurich, 63 pp.Google Scholar
  11. Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112: 503–523CrossRefGoogle Scholar
  12. Matzinger N, Andretta M, Gorsel E, Vogt R, Ohmura A, Rotach M (2003) Surface radiation budget in an alpine valley. Quart J Roy Meteorol Soc 129(588): 877–895CrossRefGoogle Scholar
  13. Mauder M, Foken T, Clement R, Elbers JA, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2007) Quality control of CarboEurope flux data—Part II: Inter-comparison of eddy-covariance software. Biogeosciences Discuss 4: 4067–4099Google Scholar
  14. McMillen R (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43(3): 231–245CrossRefGoogle Scholar
  15. Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremešivaniâ v prizemnom sloe atmosfery. Trudy geofiz inst Akad Nauk SSSR 24(151):163–187 (in Russian)Google Scholar
  16. Oke T (1987) Boundary layer climates. Methuen, London, pp. 435Google Scholar
  17. R Development Core Team (2006) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, URL http://www.R-project.org, ISBN 3-900051-07-0
  18. Rogiers N (2005) Impact of site history and land-management on CO2 fluxes at a grassland in the Swiss pre-alps. PhD thesis, University of Bern, 177 pp.Google Scholar
  19. Rotach M, Calanca P, Weigel A, Andretta M (2003) On the closure of the surface energy balance in highly complex terrain. ICAM/MAP 37: 247–250Google Scholar
  20. Ruimy A, Jarvis P, Baldocchi D, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26: 1–68CrossRefGoogle Scholar
  21. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  22. Urfer-Henneberger C (1970) Neuere Beobachtungen über die Entwicklung des Schönwetterwindsystems in einem V-förmigen Alpental (Dischmatal bei Davos). Arch Meteorol Geophys Bioklimatol 18: 21–42CrossRefGoogle Scholar
  23. Urfer-Henneberger C, Turner H (1982) Bodennahes Windsystem und Temperaturgradienten bei verschiedenen Wetterlagen in einem von Süden nach Norden führenden V-förmigen Alpental. Arch Meteorol Geophys Bioklimatol B 31: 253–271CrossRefGoogle Scholar
  24. Molen MK, Zeeman MJ, Lebis J, Dolman AJ (2006) Eclog: a handheld eddy-covariance logging system. Comput Electron Agric 51(1–2): 110–114Google Scholar
  25. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106(447): 85–100CrossRefGoogle Scholar
  26. Whiteman C, Allwine K (1986) Extraterrestrial solar radiation on inclined surfaces. Environ Softw 1(3): 164–174CrossRefGoogle Scholar
  27. Whiteman C, Allwine K, Fritschen L, Orgill M, Simpson J (1989) Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J Appl Meteorol 28(6): 414–426Google Scholar
  28. Whiteman CD (2000) Mountain meteorology fundamentals and applications. Oxford University Press, 355 pp.Google Scholar
  29. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at fluxnet sites. Agric Forest Meteorol 113(1–4): 223–243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rebecca Hiller
    • 1
    • 2
  • Matthias J. Zeeman
    • 3
  • Werner Eugster
    • 3
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.University of MinnesotaSaint PaulUSA
  3. 3.Institute of Plant SciencesETH ZurichZurichSwitzerland

Personalised recommendations