Boundary-Layer Meteorology

, Volume 126, Issue 1, pp 125–136 | Cite as

Towards Closing the Surface Energy Budget of a Mid-latitude Grassland

  • Adrie F. G. JacobsEmail author
  • Bert G. Heusinkveld
  • Albert A. M. Holtslag
Open Access
Orignal Paper


Observations for May and August, 2005, from a long-term grassland meteorological station situated in central Netherlands were used to evaluate the closure of the surface energy budget. We compute all possible enthalpy changes, such as the grass cover heat storage, dew water heat storage, air mass heat storage and the photosynthesis energy flux, over an averaging time interval. In addition, the soil heat flux was estimated using a harmonic analysis technique to obtain a more accurate assessment of the surface soil heat flux. By doing so, a closure of 96% was obtained. The harmonic analysis technique appears to improve closure by 9%, the photosynthesis for 3% and the rest of the storage terms for a 3% improvement of the energy budget closure. For calm nights (friction velocity u * < 0.1 m s−1) when the eddy covariance technique is unreliable for measurement of the vertical turbulent fluxes, the inclusion of a scheme that calculates dew fluxes improves the energy budget closure significantly.


Grassland Photosynthesis Soil heat flux Surface energy budget Surface energy budget closure 


  1. Atzema AJ (1993). The effect of the weather on the drying rate of cu diploid and tetraploid perennial ryegrass (Lolium perenn L.) and diploid hybrid ryegrass (Lolium perenne × L. multiflorum). Grass Forage Sci 48: 362–368 CrossRefGoogle Scholar
  2. Bolle HJ, André J-C and Arrue JL (1993). EFEDA: European field experiment in an desertification-threatened area. Ann Geophys 11: 173–189 Google Scholar
  3. Braud I, Noilhan J, Bessemoulin J, Mascart P, Haverkamp P and Vauclin R (1993). Bareground surface heat and water exchanges under dry conditions. Boundary-Layer Meteorol 66: 173–200 CrossRefGoogle Scholar
  4. Brotzge JA and Crawford KC (2003). Examination of the surface energy budget: a comparison of Eddy Correlation and Bowen Ratio measurement systems. J Hydrometeorol 4: 160–178 CrossRefGoogle Scholar
  5. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer Verlag, 286 ppGoogle Scholar
  6. Culf AD, Foken T, Gash JH (2004) The energy balance closure problem. In: Kabat P, Claussen M, Dimeyer PA, Gash JH, De Guenni LB, Meybeck M, Pielke M, Vorosmarty RA, Hutjes CJ, Lutkemaier RW (eds) Vegetation, water, humans and the climate. Springer Verlag, 566 ppGoogle Scholar
  7. De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of plant environment, North Holland Publ, Amsterdam, 385 ppGoogle Scholar
  8. Finnigan JJ, Clement R, Malhi Y, Leuning R and Cleugh HA (2003). A re-evaluation of long-term measurement techniques. Part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107: 1–48 CrossRefGoogle Scholar
  9. Foken T (2006). Angewandte meteorologie. Springer Verlag, Berlin, 290 Google Scholar
  10. Foken T and Wichura B (1996). Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78: 83–105 CrossRefGoogle Scholar
  11. Foken T, Wimmer F, Mauder M, Thomas C and Liebethal C (2006). Some aspects of the energy balance closure problem. Atm Chem Phys Discuss 6: 4395–4402 CrossRefGoogle Scholar
  12. Fritschen LJ and Gay LW (1979). Environmental instrumentation. Springer Verlag, NewYork, 216 Google Scholar
  13. Garratt JR and Segal M (1988). On the contribution to dew formation. Boundary-Layer Meteorol 45: 209–236 CrossRefGoogle Scholar
  14. Garratt JR (1992). The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 Google Scholar
  15. Heusinkveld BG, Jacobs AFG, Holtslag AAM and Berkowicz SM (2004). Surface energy balance closure in an arid region: role of soil and heat flux. Agric Forest Meteorol 122: 21–37 CrossRefGoogle Scholar
  16. Holtslag AAM and De Bruin HAR (1988). Applied modeling of nighttime surface energy balance over land. J Appl Meteorol 27: 689–704 CrossRefGoogle Scholar
  17. Jacobs AFG, Heusinkveld BG and Holtslag AAM (2003). Carbon dioxide and water vapour flux densities over a grassland area in The Netherlands. Int J Climatol 23: 1663–1675 CrossRefGoogle Scholar
  18. Jacobs AFG, Heusinkveld BG and Klok EJ (2005). Leaf wetness within a Lily canopy. Meteorol Applications 12: 193–198 CrossRefGoogle Scholar
  19. Jacobs AFG, Heusinkveld BG, Wichink Kruit RJ, Berkowicz SM (2006a) Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resaur Res 42:W03415, doi:10.1029/2005WR004055Google Scholar
  20. Jacobs AFG, Heusinkveld BG and Kessel GJT (2006b). Measurement and simulation of leaf wetness duration within a potato canopy. Neth J Agric Sci 53: 151–166 Google Scholar
  21. Laubach J, Raschendorfer M, Kreilein H and Gravenhorst G (1994). Determination of heat and water vapour fluxes above a spruce forest by eddy correlation. Agric Forest Meteorol 71: 373–401 CrossRefGoogle Scholar
  22. Mayocchi CL and Bristow KL (1995). Soil surface heat flux: some general questions and comments on measurements. Agric Forest Meteorol 75: 43–50 CrossRefGoogle Scholar
  23. McCaughy JH and Saxon WL (1988). Energy balance storage terms in a mixed forest. Agric Forest Meteorol 44: 1–18 CrossRefGoogle Scholar
  24. Meyers TP and Hollinger SE (2004). An assessment of storage terms in the surface energy balance of maize and soybean. Agric Forest Meteorol 125: 105–115 CrossRefGoogle Scholar
  25. Mogensen VO (1970). The calibration factor of heat flux meters in relation to the thermal conductivity of the surrounding medium. Agric Forest Meteorol 7: 401–410 Google Scholar
  26. Nobel PS (1974). Introduction to biophysical plant physiology. Freeman, New York, 260 Google Scholar
  27. Sakai RK, Fitzjarrald D and Moore KE (2001). Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40: 2178–2192 CrossRefGoogle Scholar
  28. Schuepp PH, Leclerc MY, MacPherson JI and Desjardin RL (1990). Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50: 355–373 CrossRefGoogle Scholar
  29. Snel S (2004) Soil-atmosphere exchange of CO2. MSc Thesis, Wageningen University, Dept. Meteorology and Air Quality, 98 ppGoogle Scholar
  30. Steeneveld GJ, Vande Wiel BJH and Holtslag AAM (2006). Modeling the evolution of the atmospheric boundary layer coupled to the land surface for a three day period in CASES-99. J Atmos Sci 63: 920–935 CrossRefGoogle Scholar
  31. Tsvang LR, Federov MM, Kader BA, Zubovskii SL, Foken T, Richter SH and Zeleny YA (1991). Turbulent exchange over a surface with chess-board-type inhomogeneities. Boundary-Layer Meteorol 55: 141–160 CrossRefGoogle Scholar
  32. Moene AF, Hartogensis OK, De Bruin HAR, Holtslag AAM and Wiel BJH (2003). Intermittent turbulence in the stable boundary layer over land. Part III: a clasification for observations during CASES-99. J Atmos Sci 60: 2509–2522 CrossRefGoogle Scholar
  33. Verhoef A (1995) Surface energy balance of shrub vegetation in the Sahel. PhD thesis, Wageningen University. 247 ppGoogle Scholar
  34. Von Randow C, Sá LDA, Prasad G, Manzi A, Kruijt B (2002) Scale variability of atmospheric surface fluxes of energy and carbon over a tropical rain forest in South-West Amazonia. I. Diurnal conditions. J Geoph Res 107:8062, doi:10.1029/2001JD000379Google Scholar
  35. Wilson KB, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B, Kowalski A, Meyers T, Moncrieff J, Monson R, Oecal W, Tenhunen J, Valentini R and Verma S (2002). Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113: 223–243 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Adrie F. G. Jacobs
    • 1
    Email author
  • Bert G. Heusinkveld
    • 1
  • Albert A. M. Holtslag
    • 1
  1. 1.Meteorology and Air Quality GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations