Advertisement

Boundary-Layer Meteorology

, Volume 125, Issue 1, pp 1–24 | Cite as

Long-term study of coherent structures in the atmospheric surface layer

  • Christian BarthlottEmail author
  • Philippe Drobinski
  • Clément Fesquet
  • Thomas Dubos
  • Christophe Pietras
Original Paper

Abstract

A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport.

Keywords

Atmospheric surface layer Coherent structures Microfront Turbulence measurements Wavelet analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo OC, Moraes OLL, Degrazia GA and Medeiros LE (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorol 119: 41–55 CrossRefGoogle Scholar
  2. Antonia RA and Chambers AJ (1978). Note on the temperature ramp structure in the marine surface layer. Boundary-Layer Meteorol 15: 3347–3355 Google Scholar
  3. Antonia RA, Chambers AJ, Friehe CA and Van Atta CW (1979). Temperature ramps in the atmospheric surface layer. J Atmos Sci 36: 99–108 CrossRefGoogle Scholar
  4. Bergström H and Högström U (1989). Turbulent exchange above a pine forest, II: organized structures. Boundary-Layer Meteorol 49: 231–263 CrossRefGoogle Scholar
  5. Brunet Y and Irvine MR (2000). The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94: 139–163 CrossRefGoogle Scholar
  6. Campbell Scientific (2002) CSAT Three dimensional sonic anemometer – User guide, Issued 04.9.02. Campbell Park, Shepshed, Loughborough, UK, 38 ppGoogle Scholar
  7. Caughey SJ and Readings CJ (1975). An observation of waves and turbulence in the earth’s boundary layer. Boundary-Layer Meteorol 9: 279–296 CrossRefGoogle Scholar
  8. Caughey SJ, Wyngaard JC and Kaimal JC (1979). Turbulence in the evolving stable boundary layer. J Atmos Sci 36: 1041–1052 Google Scholar
  9. Chen J and Hu F (2003). Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe river basin, China. Boundary-Layer Meteorol 107: 429–444 CrossRefGoogle Scholar
  10. Chen W, Novak MD, Black TA and Lee X (1997). Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorol 84: 99–123 CrossRefGoogle Scholar
  11. Collineau S and Brunet Y (1993a). Detection of turbulent coherent motions in a forest canopy, Part 1: wavelet analysis. Boundary-Layer Meteorol 65: 357–379 Google Scholar
  12. Collineau S and Brunet Y (1993b). Detection of turbulent coherent motions in a forest canopy, Part 2: time-scales and conditional averages. Boundary-Layer Meteorol 66: 49–73 CrossRefGoogle Scholar
  13. Drobinski P and Foster RC (2003). On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Boundary-Layer Meteorol 108: 247–256 CrossRefGoogle Scholar
  14. Drobinski P, Brown RA, Flamant PH and Pelon J (1998). Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Boundary-Layer Meteorol 88: 343–361 CrossRefGoogle Scholar
  15. Drobinski P, Carlotti P, Newsom RK, Banta RM, Foster RC and Redelsberger J-L (2004). The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61: 699–714 CrossRefGoogle Scholar
  16. Drobinski P, Carlotti P, Redelsberger J-L, Banta RM, Masson V and Newsom RK (2007). Numerical and experimental investigation of the neutral atmospheric surface layer. J Atmos Sci 64: 137–156 CrossRefGoogle Scholar
  17. Drobinski P, Redelsberger J-L and Pietras C (2006). Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys Res Lett 33: L23806. doi:10.1029/2006GL027062 CrossRefGoogle Scholar
  18. Feigenwinter C and Vogt R (2005). Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81: 219–230 CrossRefGoogle Scholar
  19. Fesquet C, Barthlott C, Drobinski P, Dubos T, Pietras C, Haeffelin M (2006) Impact of terrain heterogeneity on near-surface turbulence: long-term investigation at SIRTA observatory. In: 17th Symposium on Boundary Layers and Turbulence/27th Conference on Agricultural and Forest Meteorology, AMS paper no. J6.6, San Diego, USAGoogle Scholar
  20. Foster RC and Brown RA (1994). On large-scale PBL modelling: surface layer models. Global Atmos Ocean Syst 2: 185–198 Google Scholar
  21. Foster RC, Vianey F, Drobinski P and Carlotti P (2006). Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Boundary-Layer Meteorol 120: 229–255 CrossRefGoogle Scholar
  22. Gao W and Li BL (1993). Wavelet analysis of coherent structures at the atmosphere-forest interface. J Appl Meteorol 32: 1717–1725 CrossRefGoogle Scholar
  23. Gao W, Shaw RH and Paw U KT (1989). Observation of organized structure in turblent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377 CrossRefGoogle Scholar
  24. Gao W, Shaw RH and Paw U KT (1992). Conditional analysis of temperature and humidity microfronts and ejection/sweep motions within and above a deciduous forest. Boundary-Layer Meteorol 59: 35–57 CrossRefGoogle Scholar
  25. Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Delanoë J, Drobinski P, Dufresne JL, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, Pelon J, Pietras C, Protat A, Romand B, Scialom G and Vautard R (2005). SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275 CrossRefGoogle Scholar
  26. Hagelberg CR and Gamage NKK (1994). Structure-preserving wavelet decompositions of intermittent turbulence. Boundary-Layer Meteorol. 70: 217–246 CrossRefGoogle Scholar
  27. Howell JF and Mahrt L (1994). An adaptive decomposition: application to turbulence. In: Foufoula-Georgiou, E and Kumar, P (eds) Wavelets in geophysics, pp 107–128. Academic Press, San Diego Google Scholar
  28. Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows – their structure and measurement. Oxford University Press, Oxford, 289 pp Google Scholar
  29. Kanda M and Hino M (1993). Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68: 237–257 CrossRefGoogle Scholar
  30. Katul G, Kuhn G, Schieldge J and Hsieh C (1997). The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83: 1–26 CrossRefGoogle Scholar
  31. Krusche N and De Oliveira AP (2004). Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110: 191–211 CrossRefGoogle Scholar
  32. Lee X, Neumann HH, Den Hartog G, Fuentes JD, Black TA, Mickle RE, Yang PC and Blanken PD (1997). Observation of gravity waves in a boreal forest. Boundary-Layer Meteorol 84: 383–398 CrossRefGoogle Scholar
  33. Lu C-H and Fitzjarrald DR (1994). Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69: 43–69 CrossRefGoogle Scholar
  34. McNaughton KG and Brunet Y (2002). Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102: 161–175 CrossRefGoogle Scholar
  35. Nieuwstadt FTM (1984). The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216 CrossRefGoogle Scholar
  36. Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J and Hipps L (1992). On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61: 55–68 CrossRefGoogle Scholar
  37. Poulos GS and Burns SP (2003). An evaluation of bulk Ri-based surface flux formulas for stable and very stable conditions with intermittent turbulence. J Atmos Sci 60: 2523–2537 CrossRefGoogle Scholar
  38. Qiu J, PawU KT and Shaw RH (1995). Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Boundary-Layer Meteorol 72: 177–204 CrossRefGoogle Scholar
  39. Raupach MR, Finnigan JJ and Brunet Y (1996). Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382 CrossRefGoogle Scholar
  40. Raupach MR, Thom AS and Edwards I (1980). A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18: 373–397 CrossRefGoogle Scholar
  41. Robinson SK (1991). Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23: 601–639 CrossRefGoogle Scholar
  42. Sadani LK and Kulkarni JR (2001). A study of coherent structures in the atmospheric surface layer over short and tall grass. Boundary-Layer Meteorol 99: 317–334 CrossRefGoogle Scholar
  43. Schols JLJ (1984). The detection and measurement of turbulent structures in the atmospheric surface layer. Boundary-Layer Meteorol 29: 39–58 CrossRefGoogle Scholar
  44. Stull R (1988). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht,, 666 pp Google Scholar
  45. Su H-B, Shaw RH, Paw U KT, Moeng C-H and Sullivan PS (1998). Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88: 363–397 CrossRefGoogle Scholar
  46. Thomas C, Foken T (2006) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorol. doi:10.1007/s10546-006-9087-zGoogle Scholar
  47. Torrence C and Compo GP (1998). A practical guide to wavelet analysis. Bull Amer Meteor Soc 79: 61–78 CrossRefGoogle Scholar
  48. Turner BJ, Leclerc MY, Gauthier M, Moore KE and Fitzjarrald DR (1994). Identification of turbulence structures above a forest canopy using a wavelet transform. J Geophys Res 99: 1919–1926 CrossRefGoogle Scholar
  49. Wallace JM, Eckelmann H and Brodkey RS (1972). The wall region in turbulent shear flow. J Fluid Mech 54: 39–48 CrossRefGoogle Scholar
  50. Wilczak JM (1984). Large-scale eddies in the unstably stratified atmospheric surface layer Part I: velocity and temperature structure. J Atmos Sci 41: 3537–3550 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Christian Barthlott
    • 1
    • 2
    Email author
  • Philippe Drobinski
    • 3
  • Clément Fesquet
    • 1
  • Thomas Dubos
    • 1
  • Christophe Pietras
    • 1
  1. 1.Laboratoire de Météorologie Dynamique, Institut Pierre Simon LaplaceÉcole PolytechniquePalaiseauFrance
  2. 2.Institut für Meteorologie und KlimaforschungUniversität Karlsruhe/Forschungszentrum KarlsruheKarlsruheGermany
  3. 3.Service d’Aéronomie, Institut Pierre Simon LaplaceUniversité Pierre et Marie CurieParisFrance

Personalised recommendations