Advertisement

Boundary-Layer Meteorology

, Volume 125, Issue 1, pp 133–154 | Cite as

Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea

  • Charles Talbot
  • Patrick Augustin
  • Céline Leroy
  • Véronique Willart
  • Hervé Delbarre
  • Georgui Khomenko
Original Paper

Abstract

In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study’s aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.

Keywords

Lidar Numerical model Meso-NH Pollutants transport Sea breeze Sodar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbs DJ (1986). Sea breeze interactions along a concave coastline in southern Australia: observations and numerical modeling study. Mon Wea Rev 114: 831–848 CrossRefGoogle Scholar
  2. Augustin P, Delbarre H, Lohou F, Campistron B, Puygrenier V, Cachier H and Lombardo T (2006). Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode. Ann Geophys 24: 2809–2822 CrossRefGoogle Scholar
  3. Beyrich F (1996). Boundary-layer structure and photochemical pollution in the Harz Mountains—An observational study. Atmos Environ 30: 1271–1281 CrossRefGoogle Scholar
  4. Beyrich F (1997). Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31: 3941–3953 CrossRefGoogle Scholar
  5. Boone A, Calvet JC and Noilhan J (1999). Inclusion of a third soil layer in a land-surface scheme using the force-restore method. J Appl Meteorol 38: 1611–1630 CrossRefGoogle Scholar
  6. Bougeault P and Lacarrere P (1989). Parametrization of orography induced turbulence in a mesobeta-scale model. Mon Wea Rev 117: 1872–1890 CrossRefGoogle Scholar
  7. Bougeault P, Sadourny R (2001) Dynamique de l’Océan et de l’atmosphère. In: de l’Ecole Polytechnique (ed), Palaiseau, France, 298 ppGoogle Scholar
  8. Calvet JC, Noilhan J, Roujean JL, Bessemoulin P, Cabelguenne M, Olioso A and Wigneron JP (1998). An interactive vegetation SVAT model tested against data from six contrasting sites. Agric Forest Meteorol 92: 73–95 CrossRefGoogle Scholar
  9. Charnock H (1955). Wind stress on a water surface. Quart J Roy Meteorol Soc 81: 639–640 CrossRefGoogle Scholar
  10. Cuxart J, Bougeault P and Redelsperger JL (2000). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126: 1–30 CrossRefGoogle Scholar
  11. Deardorff JW (1972). Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29: 91–115 CrossRefGoogle Scholar
  12. Delbarre H, Augustin P, Saïd F, Campistron B, Bénech B, Lohou F, Puygrenier V, Moppert C, Cousin F, Fréville P and Fréjafon E (2005). Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmos Res 74: 403–433 CrossRefGoogle Scholar
  13. Déqué M, Drevton A, Braun A and Cariolle D (1994). The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dyn 10: 249–266 CrossRefGoogle Scholar
  14. Durand P, Briere S and Druilhet A (1989). A sea-land transition observed during the coast experiment. J Atmos Sci 46: 96–116 CrossRefGoogle Scholar
  15. Finkele K, Hacker JM, Kraus H and Byron-Scott RAD (1995). A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorol 73: 299–317 CrossRefGoogle Scholar
  16. Finkele K (1998). Inland and offshore propagation speeds of a sea breeze from simulation and measurements. Boundary-Layer Meteorol 87: 307–329 CrossRefGoogle Scholar
  17. Frizzola JA and Fisher EL (1963). A series of sea-breeze observations in the New-York city area. J Appl Meteorol 2: 722–739 CrossRefGoogle Scholar
  18. Garratt JR (1990). The Internal Boundary-Layer—A review. Boundary-Layer Meteorol 50: 171–203 CrossRefGoogle Scholar
  19. Garratt JR (1992) The atmospheric boundary-layer. Cambridge University Press, Cambridge, UK, 316 ppGoogle Scholar
  20. Gilliam RC, Raman S and Devdutta S Niyogi (2004). Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Boundary-Layer Meteorol 111: 275–300 CrossRefGoogle Scholar
  21. Gossard EE, Gaynor JE, Zamora JE and Neff WD (1985). Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J Atmos Sci 42: 2156–2169 CrossRefGoogle Scholar
  22. Harris L and Kotamarthi VR (2005). The characteristics of the Chicago Lake breeze and its effects on trace particle transport: results from an episodic event simulation. J Appl Meteorol 44: 1637–1654 CrossRefGoogle Scholar
  23. Holton JR (1992) An Introduction to dynamic meteorology. In: Int Geophys Ser (3rd edn.), Vol 48. Academic Press, London, UK, 511 ppGoogle Scholar
  24. Jamima P and Lakshminarasimhan J (2004). Numerical simulation of sea-breeze characteristics observed at tropical coastal site, Kalpakkam. Proc Indian Acad Sci (Earth Planet Sci) 113: 197–209 Google Scholar
  25. Kambezidis HD, Weidauer D, Melas D and Ulbricht M (1998). Air quality in the Athens basin during sea-breeze and non-sea-breeze days using laser remote sensing technique. Atmos Environ 32: 2173–2182 CrossRefGoogle Scholar
  26. Kolev IN, Skakalova TS, Parvanov O, Kaprielov BK, Donev E and Ivanov CD (1996). Lidar visualization of the aerosol stratification and the internal boundary layer in the coastal area in the case of breeze circulation. Proc SPIE 3052: 300–305 CrossRefGoogle Scholar
  27. Kölsch HJ, Rairoux P, Wolf JP and Wöste L (1992). Comparative study of nitric oxide immission in the cities of Lyon, Geneva and Stuttgart using a mobile differential absorption lidar system. Appl Phys B 54: 89–94 CrossRefGoogle Scholar
  28. Kouchi A, Ohba R and Shao Y (1999). Gas diffusion in a convection layer near a coastal region. J Wind Eng Ind Aerod 81: 171–180 CrossRefGoogle Scholar
  29. Kunz GJ, Becker E, O’Dowd CD and Leeuw G (2002). Lidar observations of atmospheric boundary layer structure and sea spray aerosol plumes generation and transport at Mace Head, Ireland (PARFORCE experiment). J Geophys Res 107: 1–14 CrossRefGoogle Scholar
  30. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E and Vilà-Gueraude Arellano J (1998). The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Ann Geophys 16: 90–109 Google Scholar
  31. Luhar AK, Sawford BL, Hacker JM and Rayner KN (1998). The Kwinana coastal fumigation study: 2—growth of the thermal internal boundary layer. Boundary-Layer Meteorol 89: 385–405 CrossRefGoogle Scholar
  32. Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396 CrossRefGoogle Scholar
  33. Masson V (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94: 357–397 CrossRefGoogle Scholar
  34. Melfi SH, Spinhirne JD, Chou SH and Palm SP (1985). Lidar observations of the vertically organized convection in the planetary boundary layer over ocean. J Clim Appl Meteorol 24: 806–821 CrossRefGoogle Scholar
  35. Menut L, Flamant C, Pelon J and Flamant PH (1999). Urban boundary layer height determination from lidar measurements over the Paris area. Appl Opt 38: 945–954 Google Scholar
  36. Miao JF, Kroon LJM, Vilà-Gueraude Arellano J and Holtslag AAM (2003). Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys 84: 157–170 CrossRefGoogle Scholar
  37. Miller STK, Keim BD, Talbot RW and Mao H (2003). Sea breeze: structure, forecasting, and impacts. Rev Geophys 41: 1/1–31 CrossRefGoogle Scholar
  38. Morcrette JJ (1991). Radiation and cloud radiative properties in the European center for medium range weather forecasts forecasting system. J Geophys Res 96: 9121–9132 CrossRefGoogle Scholar
  39. Nazir M, Khan FI and Husain T (2005). Revised estimates for continuous shoreline fumigation: a PDF approach. J Hazard Mater A 118: 53–65 CrossRefGoogle Scholar
  40. Noilhan J and Planton S (1989). A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117: 536–549 CrossRefGoogle Scholar
  41. Noilhan J and Mahfouf JF (1996). The ISBA land surface parametrization scheme. Glob Planet Change 13: 145–159 CrossRefGoogle Scholar
  42. Oh IB, Kim YK, Lee HW and Kim CH (2006). An observational and numerical study of the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea. Atmos Environ 40: 1284–1298 CrossRefGoogle Scholar
  43. Ohba R, Shao Y and Kouchi A (1998). A wind tunnel and numerical investigation of turbulent dispersion in coastal atmospheric boundary layers. Boundary-Layer Meteorol 87: 255–273 CrossRefGoogle Scholar
  44. Pedlosky J (1986) Geophysical fluid dynamics, 2nd edn. Springer-Verlag, 710 ppGoogle Scholar
  45. Physick WL (1980). Numerical experiments on the inland penetration of the sea breeze. Quart J Roy Meteorol Soc 106: 735–746 CrossRefGoogle Scholar
  46. Puygrenier V, Lohou F, Campistron B, Saïd F, Pigeon G, Benech B and Serça D (2005). Investigation on the fine structure of sea breeze during ESCOMPTE experiment. Atmos Res 74: 329–353 CrossRefGoogle Scholar
  47. Rao MP, Casadio S, Fiocco G, Lena F, Cacciani M, Calisse PG, Fua D and Sarra A (1995). Observation of lump structures in the nocturnal atmospheric boundary layer with Doppler sodar and Raman lidar. Geophys Res Lett 22: 2505–2508 CrossRefGoogle Scholar
  48. REMTECH (2000) Sodar manual. Remtech 98 ppGoogle Scholar
  49. Simpson JE (1994) Sea breeze and Local Wind. Cambridge University Press, Cambridge, UK, 234 ppGoogle Scholar
  50. Srinivas CV and Venkatesan R (2005). A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site. Atmos Environ 39: 1497–1511 CrossRefGoogle Scholar
  51. Steyn DG (1998). Scaling the vertical structure of sea breezes. Boundary-Layer Meteorol 86: 505–524 CrossRefGoogle Scholar
  52. Steyn DG (2003). Scaling the vertical structure of sea breezes revisited. Boundary-Layer Meteorol 107: 177–188 CrossRefGoogle Scholar
  53. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, the Netherlands, 666 ppGoogle Scholar
  54. Thomasson A, Geffroy S, Fréjafon E, Weidauer D, Fabian R, Godet Y, Nominé N, Ménard T, Rairoux P, Moeller D and Wolf JP (2002). LIDAR mapping of ozone-episode dynamics in Paris and intercomparison with spot analysers. Appl Phys B 74: 453–459 CrossRefGoogle Scholar
  55. Venkatram A (1986). An examination of methods to estimate the height of the coastal internal boundary layer. Boundary-Layer Meteorol 36: 149–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Charles Talbot
    • 1
  • Patrick Augustin
    • 2
  • Céline Leroy
    • 2
  • Véronique Willart
    • 1
  • Hervé Delbarre
    • 2
  • Georgui Khomenko
    • 1
  1. 1.FRE 2816, ELICOUniversité du Littoral Côte d’OpaleWimereuxFrance
  2. 2.UMR 8101, LPCAUniversité du Littoral Côte d’OpaleDunkerqueFrance

Personalised recommendations