Boundary-Layer Meteorology

, Volume 124, Issue 1, pp 3–24 | Cite as

The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715

  • Martin Piringer
  • Sylvain Joffre
  • Alexander Baklanov
  • Andreas Christen
  • Marco Deserti
  • Koen De Ridder
  • Stefan Emeis
  • Patrice Mestayer
  • Maria Tombrou
  • Douglas Middleton
  • Kathrin Baumann-Stanzer
  • Aggeliki Dandou
  • Ari Karppinen
  • Jerzy Burzynski
Original Paper

Abstract

The specific problems of determining and simulating the surface energy balance (SEB) and the mixing height (MH) over urban areas are examined. The SEB and MH are critical components of algorithms and numerical models for the urban boundary layer, though the constituent parts of the SEB and the MH are not routinely measured by national weather services. Parameterisations are thus needed in applications. In this investigation, several recently developed algorithms and models for estimating the SEB and MH were applied to new datasets and assessed. Results are discussed in terms of the need for spatial resolution and the parameters needed to describe the urban atmosphere. Limitations of models are identified and recommendations for further development and observations are given. Having identified gaps in knowledge, key findings from new urban experiments and numerical modelling for the SEB and MH are given. The diurnal cycle for the SEB is significantly different from rural conditions—urban heat storage is needed in urban parameterisations. The urban MH is increased over the rural MH, as shown by several numerical schemes and careful sodar analyses. This work has been carried out within the COST-715 Action “Meteorology applied to urban air pollution problems (1998–2004). COST 715 reached a consensus proposing representatively sited measurements of meteorological parameters and turbulent fluxes above roof-tops, and recognised that such data are needed to improve numerical models of the urban surface processes.

Keywords

Dispersion modelling Mixing height Surface energy balance Urban atmosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes RA, Warner TT (1978) The development of hydrodynamic models suitable for air pollution and other meteorological studies. Mon Wea Rev 106:1045–1078CrossRefGoogle Scholar
  2. Arya SPS (1981) Parameterizing the height of the stable atmospheric boundary layer. J Appl Meteorol 20:1192–1202CrossRefGoogle Scholar
  3. Baklanov A (2002) The mixing height in urban areas—a review. In: Piringer M, Kukkonen J (eds), Proceedings of the workshop ‘Mixing height and inversions in urban areas. Toulouse, France, 3–4 October (2001) COST report EUR 20451, pp 9–28Google Scholar
  4. Baklanov A (2006) Overview of the European project FUMAPEX. Atmos Chem Phys 6:2005–2015CrossRefGoogle Scholar
  5. Baklanov A, Rasmussen A, Fay B, Berge E, Finardi S (2002) Potential and shortcomings of numerical weather prediction models in providing meteorological data for urban air pollution forecasting. Water, Air Soil Poll.: Focus, 2:43–60CrossRefGoogle Scholar
  6. Baklanov A, Mestayer P, Clappier A, Zilitinkevich S, Joffre S, Mahura A, Nielsen NW (2005) On the parameterisation of the urban atmospheric sublayer in meteorological models’. Atmos Chem Phys Discussions 5:12119–12176CrossRefGoogle Scholar
  7. Baklanov A, Hänninen O, Slørdal LH, Kukkonen J, Bjergene N, Fay B, Finardi S, Hoe SC, Jantunen M, Karpinen A, Rasmussen A, Skouloudis A, Sokhi RS, Srensen JH (2006) Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmos Chem Phys Discussions, 6:1867–1913CrossRefGoogle Scholar
  8. Batchvarova E, Gryning S-E (1991) Applied model for the growth of the daytime mixed layer’. Boundary-Layer Meteorol 56(3):261–274CrossRefGoogle Scholar
  9. Baumann-Stanzer K, Piringer M (2003) Diagnostic mixing heights with and without urban fetch. In: Sokhi R, Brechler J, (eds) Proc. of the 4th Int. Conf. on Urban Air Quality, Charles University Prague, 25–27 March 2003, pp 412–415Google Scholar
  10. Benkley CW, Schulman LL (1979) Estimating mixing depths from historical meteorological data. J Appl Meteorol 18:772–780CrossRefGoogle Scholar
  11. Berman S, Ku J-Y, Zhang J, Rao ST (1997) Uncertainties in estimating the mixing depth: comparing three mixing-depth models with profiler measurements. Atmos Environ 31(18):3023–3039CrossRefGoogle Scholar
  12. Best MJ (2005) Presenting urban areas within operational numerical weather prediction models. Boundary-Layer Meteorol 114:91–109CrossRefGoogle Scholar
  13. Brutsaert W (1975) The roughness length for water vapor, sensible heat, and other scalars. J Atmos Sci 32:2028–2031CrossRefGoogle Scholar
  14. Brutsaert W (1982) Evaporation into the atmosphere. Reidel D, Hingham, Mass, 299 ppGoogle Scholar
  15. Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24:1395–1421CrossRefGoogle Scholar
  16. Christen A, Bernhofer C, Parlow E, Rotach MW, Vogt R (2003) Partitioning of turbulent fluxes over different urban surfaces. Proceedings of the fifth international conference on urban climate, September 1–5 2003, Lodz, PolandGoogle Scholar
  17. COST-715 (2002a) Surface energy balance in urban areas. Piringer M (ed), Extended abstracts of an Expert Meeting. WG-2 COST Action 715, Antwerp, Belgium, 12 April 2000. European Commission. Report EUR 19447, 103 ppGoogle Scholar
  18. COST-715 (2002b) Urban boundary layer parameterisations. In: Rotach MW, Fisher B, Piringer M. (eds) Extended abstracts of the Workshop, Zurich, 24–25 May, 2001, COST-715 Action. CEC, Luxembourg, EUR 20355, 118 ppGoogle Scholar
  19. COST-715 (2002c) Mixing height and inversions in urban areas. In: Piringer M, Kukkonen J (eds) Proceedings of the Workshop, 3–4 October, 2001, Toulouse, F. COST Action 715, EUR 20451, European Communities, Luxembourg, 113 ppGoogle Scholar
  20. Dandou A, Akylas A, Tombrou M, Soulakellis N, Bossioli E (2005) Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5). J Geophys Res Atmos 110:D10102Google Scholar
  21. De Bruin HAR, Van den Hurk BJJM, Kohsiek W (1995) The Scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76:25–40CrossRefGoogle Scholar
  22. De Ridder K, Schayes G (1997) The IAGL land surface model. J Appl Meteorol 36:167–182CrossRefGoogle Scholar
  23. De Ridder K (2006) Testing Brutsaert’s temperature roughness parameterization for representing urban surfaces in atmospheric models. Geophys Res Lett 33:L13403, doi:10.1029/2006GL026572Google Scholar
  24. Deserti M, Cacciamani C, Golinelli M, Kerschbaumer A, Leoncini G, Savoia E, Selvini A, Paccagnella T, Tibaldi S (2001) Operational meteorological pre-processing at Emilia-Romagna ARPA Meteorological Service as a part of a decision support system for Air Quality Management. Int J Environ Poll 16:571–582Google Scholar
  25. Dupont S, Mestayer PG, Guilloteau E, Berthier E, Andrieu H (2006) Parameterisation of the Urban Water Budget with the Submesoscale Soil Model. J Appl Meteorol Climatol 45:624–648CrossRefGoogle Scholar
  26. Dupont S, Mestayer PG (2006) Parameterisation of the urban energy budget with the submesoscale Soil Model. J Appl Meteorol Climatol 45:1744–1765CrossRefGoogle Scholar
  27. Emeis S, Türk M (2004) Frequency distributions of the mixing height over an urban area from SODAR data. Meteorol Z 13:361–367CrossRefGoogle Scholar
  28. Fisher B, Joffre S, Kukkonen J, Piringer M, Rotach MW, Schatzmann M (eds) (2005) Meteorology applied to urban air pollution problems. Final report of COST-715 Action, ISBN 954-9526-30-5, Demetra Ltd Publishers, Sofia, 276 pGoogle Scholar
  29. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge (UK), 316 ppGoogle Scholar
  30. Garret AJ (1981) Comparison of observed mixed layer depth to model estimates using observed temperature and winds, and MOS forecasts. J Appl Meteorol 20:1277–1283CrossRefGoogle Scholar
  31. Grimmond CSB, Cleugh HA, Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmos Environ 25B:311–326Google Scholar
  32. Grimmond CSB, Oke TR (1999a) Heat storage in urban areas: Local-scale observations and evaluation of a simple mode. J Appl Meteorol 38:922–940CrossRefGoogle Scholar
  33. Grimmond CSB, Oke TR (1999b) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292CrossRefGoogle Scholar
  34. Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41:792–810CrossRefGoogle Scholar
  35. Gryning S-E, Batchvarova E (2001) Mixing height in urban areas – will ‘rural’ parameterisations work? COST-Action 715 Workshop on Urban Boundary Layer parameterisations. Zuerich, May 24–25 2001, 99–109Google Scholar
  36. Hamdi R, Schayes G (2005) Validation of the Martilli’s urban boundary layer scheme with measurements from two mid-latitude European cities. Atmos Chem Phys Discussions 5:4257–4289CrossRefGoogle Scholar
  37. Heffter JL (1980) Transport layer depth calculations. 2nd Joint conference on applications of air pollution modelling. Amer Meteorol Soc, pp 787–791Google Scholar
  38. Holzworth CC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorol 6:1039–1044CrossRefGoogle Scholar
  39. Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339CrossRefGoogle Scholar
  40. Joffre S, Kangas M (2002) Determination and scaling of the atmospheric boundary layer height under various stability conditions over a rough surface. In: Rotach M, Fisher B, Piringer M (eds), COST Action 715 Workshop on Urban Boundary Layer Parameterisations (Zurich, 24–25 May 2001). Office for Official Publications of the European Communities, EUR 20355:111–118Google Scholar
  41. Klapisz B, Weill A (1985) Modélisation semi-empirique de la couche limite nocturne. Application au calcul du profil d’indice de refraction. Ann Telecomm 40:672–679Google Scholar
  42. Lagouarde J-P, Irvine M, Bonnefond J-M, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Boundary-Layer Meteorol 118:449–476CrossRefGoogle Scholar
  43. Lena F, Desiato F (1999) Intercomparison of nocturnal mixing height estimate methods for urban air pollution modelling. Atmos Environ 33(15):2385–2393CrossRefGoogle Scholar
  44. Lyra R, Druilhet A, Benech B, Bouka Biona C (1992) Dynamics above a dense equatorial rain forest from the surface boundary layer to the free atmosphere. J Geophys Res 97, 12, 953–12, 965Google Scholar
  45. Mahrt L (1982) Momentum balance of gravity flows. J Atmos Sci 39:2701–2711 Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104:261–304CrossRefGoogle Scholar
  46. Maryon RH, Best MJ (1992) NAME. ‘ATMES’ and the boundary layer problem. UK Met. Office (APR) Turbulence and Diffusion Note, No. 204Google Scholar
  47. Masson V (2000) A Physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94:357–397CrossRefGoogle Scholar
  48. McAneney KJ, Green AE, Astill MS (1995) Large-aperture Scintillometry: the Homogeneous Case. Agric For Meteorol 76:149–162CrossRefGoogle Scholar
  49. Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond J-M, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde J-P, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant J-M, Saïd F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary layer field campaign in marseille (UBL/CLU-ESCOMPTE): Set-up and first results. Boundary-Layer Meteorol 114: 315–365CrossRefGoogle Scholar
  50. Nieuwstadt FTM (1981) The steady state height and resistance laws of the nocturnal boundary layer: theory compared with Cabauw observations. Boundary-Layer Meteorol 20:3–17CrossRefGoogle Scholar
  51. Nieuwstadt FTM (1984a) Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol 30:31–55CrossRefGoogle Scholar
  52. Nieuwstadt FTM (1984b) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216CrossRefGoogle Scholar
  53. Oke TR (1988) The urban energy balance. Progress Phys Geog 12:471–508CrossRefGoogle Scholar
  54. Oke TR, Spronken-Smith R, Jauregui E, Grimmond CSB (1999) Recent energy balance observations in Mexico City. Atmos Environ 33:3919–3930CrossRefGoogle Scholar
  55. Pigeon G, Lemonsu A, Masson V, Durand P, Lohou F, Puygrenier V (2003) Sea-town interactions over Marseille—Part II: consequences on atmospheric structure near the surface. Fifth international conference on urban climate, Lodz, Poland, Sept. 1–5, 2003. Proc Vol. 1, pp. 435–438 Klysik K, Oke TR, Fortuniak K, Grimmond S, Wibig J (ed) Int. Assoc. for Urban Clim., Bloomington, IndianaGoogle Scholar
  56. Piringer M, Baumann K, Langer M (1998) Summertime mixing heights at Vienna, Austria, estimated from vertical soundings and by a numerical model. Boundary-Layer Meteorol 89:25–45CrossRefGoogle Scholar
  57. Piringer M, Grimmond CSB, Joffre SM, Mestayer PG, Middleton DR, Rotach MW, Baklanov A, De Ridder K, Ferreira J, Guilloteau E, Karppinen A, Martilli A, Masson V, Tombrou M (2002) Investigating the surface energy balance in urban areas—recent advances and future needs. Water Air Soil Poll Focus 2:1–16 Piringer M, Joffre S (eds) (2005) The urban surface energy budget and mixing height in European cities: Data, models and challenges for urban meteorology and air quality. Final report of Working Group 2 COST-715 Action, ISBN 954-9526-29-1, Demetra Ltd Publishers, Sofia, 239 pGoogle Scholar
  58. Roberts SM, Oke TR, Voogt JA, Grimmond CSB, Lemonsu A (2003) Energy Storage in a European City Center. In: CD proceedings, 5th international conference on urban climate. Lodz, Poland, 1–5 Sept. (2003) O.12.1 (4 p.)Google Scholar
  59. Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3:1–101Google Scholar
  60. Rotach MW, Fisher B, Piringer M (2002) COST 715 Workshop on urban boundary layer parameterizations. Bull Amer Meteorol 83:1501–1504CrossRefGoogle Scholar
  61. Rotach MW, Gryning SE, Batchvarova E, Christen A, Vogt R (2004) Pollutant dispersion close to an urban surface - the BUBBLE tracer experiment. Meteorol Atm Phys 87: 39–56Google Scholar
  62. Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning S-E, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Voogt J (2005) BUBBLE—an Urban Boundary Layer Meteorology Project. Theor Appl Climatol 81:231–261CrossRefGoogle Scholar
  63. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier Ph (1998) Mixing height determination for dispersion modelling. Report of Working Group 2. In: Harmonization in the Preprocessing of meteorological data for atmospheric dispersion models. COST Action 710, CEC Publication EUR 18195, pp. 145–265Google Scholar
  64. Sokhi R, Baklanov A, Clark P, Joffre S, Millán MM, Schlünzen KH (2005) Enhancing meso-scale meteorological modelling capabilities for air pollution and dispersion applications (COST 728). Short papers of the 5th international conference on urban air quality Valencia, Spain, 29–31 March 2005, Plenary, pp 10–13Google Scholar
  65. Stull RB (1991) Static Stability—an update. Bull Amer Meteorol Soc 72:1521–1529CrossRefGoogle Scholar
  66. Taha H (1998) Modifying a mesoscale meteorological model to better incorporate urban: heat storage: a bulk-parameterization Approach. J Appl Meteorol 38:466–473CrossRefGoogle Scholar
  67. Tennekes H, Driedonks AGM (1981) Basic entrainment equations for the atmospheric boundary layer. Boundary-Layer Meteorol 20(4):515–531CrossRefGoogle Scholar
  68. Tombrou M, Dandou A, Helmis C, Akylas E, Aggelopoulos G, Flocas H, Assimakopoulos V, Soulakellis N (2006) Model evaluation of the atmospheric boundary layer and mixed layer evolution. Boundary-Layer Meteorol, Doi: 10.1007/s10546-006-9146-5Google Scholar
  69. Troen I, Mahrt L (1986) A simple model for the atmospheric boundary layer: Sensitivity to surface evaporation. Boundary-Layer Meteorol 37:129–148CrossRefGoogle Scholar
  70. Venkatram A (1980) Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Boundary-Layer Meteorol 18:481CrossRefGoogle Scholar
  71. Vogelezang DHP, Holtslag AAM (1996) Evolution and model impacts of the alternative boundary layer formulations. Boundary-Layer Meteorol 81:245–269CrossRefGoogle Scholar
  72. Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39:1679–1699CrossRefGoogle Scholar
  73. Wotawa G, Stohl A, Kromp-Kolb H (1996) Parameterization of the planetary boundary layer over Europe: a data comparison between the observation-based OML preprocessor and ECMWF model data. Contrib Atmos Phys 69:273–284Google Scholar
  74. Xue M, Droegemeier KK, Wong V (2000) The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: model dynamics and verification. Meteor Atmos Phys 75:161–193CrossRefGoogle Scholar
  75. Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Ym, Wang D-H (2001) The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications. Meteor Atmos Phys 76:134–165CrossRefGoogle Scholar
  76. Zilitinkevich S, Mironov D (1996) A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Boundary-Layer Meteorol 81:325–351CrossRefGoogle Scholar
  77. Zilitinkevich S, Baklanov A (2002) Calculation of the height of stable boundary layers in practical applications. Boundary-Layer Meteorol 105:389–409CrossRefGoogle Scholar
  78. Zilitinkevich S, Baklanov A, Rost J, Smedman A-S, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart J Roy Meteorol Soc 128:25–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Martin Piringer
    • 1
  • Sylvain Joffre
    • 2
  • Alexander Baklanov
    • 3
  • Andreas Christen
    • 4
  • Marco Deserti
    • 5
  • Koen De Ridder
    • 6
  • Stefan Emeis
    • 7
  • Patrice Mestayer
    • 8
  • Maria Tombrou
    • 9
  • Douglas Middleton
    • 10
  • Kathrin Baumann-Stanzer
    • 1
  • Aggeliki Dandou
    • 9
  • Ari Karppinen
    • 2
  • Jerzy Burzynski
    • 11
  1. 1.Central Institute for Meteorology and GeodynamicsViennaAustria
  2. 2.Finnish Meteorological InstituteHelsinkiFinland
  3. 3.Danish Meteorological InstituteCopenhagenDenmark
  4. 4.Department of GeographyUniversity of British ColumbiaVancouverCanada
  5. 5.Agenzia Regionale Prevenzione e Ambiente dell’Emilia Romagna – Servizio Idro MeteorologicoBolognaItaly
  6. 6.VITO-TAPMolBelgium
  7. 7.Institut für Meteorologie und Klimaforschung-Atmosphärische Umweltforschung-IMK-IFU Forschungszentrum Karlsruhe GmbHGarmisch-PartenkirchenGermany
  8. 8.Laboratoire de Mecanique des FluidesCNRS-Ecole Centrale de NantesNantesFrance
  9. 9.Department of Applied PhysicsUniversity of AthensAthensGreece
  10. 10.Meteorological OfficeExeterUK
  11. 11.Institute of Meteorology and Water Management, Regional OfficeKrakowPoland

Personalised recommendations