Boundary-Layer Meteorology

, Volume 123, Issue 1, pp 1–28 | Cite as

The Energy Balance Experiment EBEX-2000. Part I: overview and energy balance

  • Steven P. Oncley
  • Thomas Foken
  • Roland Vogt
  • Wim Kohsiek
  • H. A. R. DeBruin
  • Christian Bernhofer
  • Andreas Christen
  • Eva van Gorsel
  • David Grantz
  • Christian Feigenwinter
  • Irene Lehner
  • Claudia Liebethal
  • Heping Liu
  • Matthias Mauder
  • Andrea Pitacco
  • Luis Ribeiro
  • Tamas Weidinger
Original Paper

Abstract

An overview of the Energy Balance Experiment (EBEX-2000) is given. This experiment studied the ability of state-of-the-art measurements to close the surface energy balance over a surface (a vegetative canopy with large evapotranspiration) where closure has been difficult to obtain. A flood-irrigated cotton field over uniform terrain was used, though aerial imagery and direct flux measurements showed that the surface still was inhomogeneous. All major terms of the surface energy balance were measured at nine sites to characterize the spatial variability across the field. Included in these observations was an estimate of heat storage in the plant canopy. The resultant imbalance still was 10%, which exceeds the estimated measurement error. We speculate that horizontal advection in the layer between the canopy top and our flux measurement height may cause this imbalance, though our estimates of this term using our measurements resulted in values less than what would be required to balance the budget.

Keywords

Flux divergence Latent heat flux Spatial sampling Sensible heat flux Soil heating Surface energy budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175Google Scholar
  2. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108:397–417CrossRefGoogle Scholar
  3. Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment. Theor Appl Climatol 73:19–34CrossRefGoogle Scholar
  4. Bolle H-J, Andr J-C, Arrie JL, Barth HK, Bessemoulin P, Brasa A, DeBruin HAR, Cruces J, Dugdale G, Engman ET, Evans DL, Fantechi R, Fiedler F, Van de Griend A, Imeson AC, Jochum A, Kabat P, Kratsch P, Lagouarde J-P, Langer I, Llamas R, Lopes-Baeza E, Melia Muralles J, Muniosguren LS, Nerry F, Noilhan J, Oliver HR, Roth R, Saatchi SS, Sanchez Diaz J, De Santa Olalla M, Shutleworth WJ, Sogaard H, Stricker H, Thornes J, Vauclin M, Wickland D (1993) EFEDA: European field experiment in a desertification-threatened area. Ann Geophys 11:173–189Google Scholar
  5. Braud J, Noilhan P, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare ground surface heat and water exchanges under dry conditions. Boundary-Layer Meteorol 66:173–200CrossRefGoogle Scholar
  6. Culf AD, Foken T, Gash JHC (2004). The energy balance closure problem. In: Kabat P et al (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin, pp 159–166Google Scholar
  7. Derner JD, Johnson HB, Kimball BA, Pinter PJ Jr, Polley HW, Tischler CR, Boutton TW, Lamorte RL, Wall GW, Adam NR, Leavitt SW, Ottman MJ, Matthias AD, Brooks TJ (2003) Above- and below-ground responses of C3-C4 species mixtures to elevated CO2 and soil water availability. Global Change Biol 9:452–460CrossRefGoogle Scholar
  8. Elagina LG, Zubkovskii SL, Kaprov BM, Sokolov DY (1973) Experimental investigations of the energy balance near the surface (in Russian). Trudy GGO 296:38–45Google Scholar
  9. Elagina LG, Kaprov BM, Timanovskii DF (1978) A characteristic of the surface air layer above snow. Izv Acad Sci USSR, Atmos Ocean Phys 14:926–931, (in Russian)Google Scholar
  10. Finnigan J (2004). Advection and modeling. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp 209–244Google Scholar
  11. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh H (2003) A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  12. Foken T (1990) Turbulenter energieaustausch zwischen Atmosphäre und Unterlage - Methoden, messtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten. Ber Dt Wetterdienstes 180:287 ppGoogle Scholar
  13. Foken T (1998) Die scheinbar ungeschlossene Energiebilanz am Erdboden - eine Herausforderung an die Experimentelle Meteorologie. Sitzungsberichte der Leibniz-Sozietät, ISSN 0947-5850, 24:131–150Google Scholar
  14. Foken T (2003) Angewandte Meteorologie, Mikrometeorologische Methoden. Springer, Heidelberg, 289 ppGoogle Scholar
  15. Foken T, Oncley S (1995) A report on the workshop: instrumental and methodical problems of land-surface flux measurements. Bull Amer Meteorol Soc 76:1191–1193Google Scholar
  16. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78:83–105CrossRefGoogle Scholar
  17. Foken T, Gerstmann W, Richter SH, Wichura B, Baum W, Ross J, Sulev M, Mölder M, Tsvang LR, Zubkovskii SL, Kukharets VP, Aliguseinov AK, Perepelkin VG, Zeleny J (1993) Study of the energy exchange processes over different types of surfaces during TARTEX-90’. Forschung und Entwicklung, Arbeitsergebnisse 4, Deutscher Wetterdienst, Offenbach am Main, ISSN 1430-0281, 34 ppGoogle Scholar
  18. Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 experiment. Forschung und Entwicklung, Arbeitsergebnisse 48, Deutscher Wetterdienst, Offenbach am Main, 75 ppGoogle Scholar
  19. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004). Post-field data quality control. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp 181–208Google Scholar
  20. Fuehrer PL, Friehe CA (2002) Flux correction revised. Boundary-Layer Meteorol 102:415–457CrossRefGoogle Scholar
  21. Gao Z (2005) Determination of soil heat flux in a Tibetan short-grass prairie. Boundary-Layer Meteorol 114:165–178CrossRefGoogle Scholar
  22. Gash JHC, Dolman AJ (2003) Sonic anemometer (co)sine response and flux measurement I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric Forest Meteorol 119:195–207CrossRefGoogle Scholar
  23. Herckes P, Lee T, Trenary L, Kang G, Chang H, Collett JL Jr (2002) Organic matter in central California radiation fogs. Environ Sci Technol 36:4777–4782CrossRefGoogle Scholar
  24. Højstrup J (1993) A statistical data screening procedure. Measuring Sci Technol 4:153–157CrossRefGoogle Scholar
  25. Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first-order response scalar sensors. Boundary-Layer Meteorol 82:219–233CrossRefGoogle Scholar
  26. Horst TW (2003) Attenuation of scalar fluxes measured with displaced sensors. EGS-AGU-EGU Joint Assembly, Nice, France, April 6–11, 2003, European Geophysical Union, Katlenburg-Lindau, Germany, (www.eol.ucar.edu/ horst/egs2003.html)Google Scholar
  27. Horst TW, Weil JC (1994) How far is far enough? The fetch requirements for micrometeorological measurement of surface fluxes. J Atmos Ocean Technol 11:1018–1025CrossRefGoogle Scholar
  28. Horst TW, Kleissl J, Lenschow DH, Meneveau C, Moeng C, Parlange MB, Sullivan PP, Weil JC (2004) HATS: field observations to obtain spatially filtered turbulence fields from crosswind arrays of sonic anemometers in the atmospheric surface layer. J Atmos Sci 61:1566–1581CrossRefGoogle Scholar
  29. Kaimal JC, Gaynor JE (1991) Another look to sonic thermometry. Boundary-Layer Meteorol 56:401–410CrossRefGoogle Scholar
  30. Kanemasu ET, Verma SB, Smith EA, Fritschen LY, Wesely M, Fild RT, Kustas WP, Weaver H, Steawart YB, Geney R, Panin GN, Moncrieff JB (1992) Surface flux measurements in FIFE: an overview. J Geophys Res 97:18,547–18,555Google Scholar
  31. Kohsiek W, Liebethal C, Vogt R, Oncley S, Bernhofer C, Foken T (2007) The energy balance experiment EBEX-2000. Part III: behaviour and quality of the radiation measurements. Boundary-Layer Meteorol 123, xx–xxGoogle Scholar
  32. Koitzsch R, Dzingel M, Foken T, Mücket G (1988) Probleme der experimentellen Erfassung des Energieaustausches über Winterweizen. Z Meteorol 38:150–155Google Scholar
  33. Kristensen L, Mann J, Oncley SP, Wyngaard JC (1997) How close is close enough when measuring scalar fluxes with displaced sensors?. J Atmos Ocean Technol 14:814–821CrossRefGoogle Scholar
  34. Laubach J, Teichmann U (1996) Measuring energy budget components by eddy correlation: data corrections and application over low vegetation. Contr Atmos Phys 69:307–320Google Scholar
  35. Lee X, Black TA (1993) Atmospheric turbulence within and above a Douglas-fir stand. Part II: eddy fluxes of sensible heat and water vapour. Boundary-Layer Meteorol 64:369–389Google Scholar
  36. Lee X, Black TA (1994) Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer. J Geophys Res 99(D9):18,545–18,553Google Scholar
  37. Lee X, Massman WJ, Law B (eds.) (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, 250 ppGoogle Scholar
  38. Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL correction revised. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp 119–132Google Scholar
  39. Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109:99–106CrossRefGoogle Scholar
  40. Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes, Corrigendum. Boundary-Layer Meteorol 113:301CrossRefGoogle Scholar
  41. Liu H (2005) An alternative approach for CO2 flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorol 115:151–168CrossRefGoogle Scholar
  42. Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468CrossRefGoogle Scholar
  43. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198CrossRefGoogle Scholar
  44. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F, Foken T (2006) Processing and quality control of eddy covariance data during LITFASS-2003. Boundary-Layer Meteorol 121:67–88CrossRefGoogle Scholar
  45. Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, Liu H (2007) The Energy Balance Experiment EBEX-2000. Part II: intercomparison of turbulence sensors and processing methods. Boundary-Layer Meteorol 123, xx–xxGoogle Scholar
  46. Milroy SP, Bange MP (2003) Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Sci 43:904–913CrossRefGoogle Scholar
  47. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  48. Oncley SP, Delany AC, Horst TW, Tans PP (1993) Verification of flux measurement using relaxed eddy accumulation. Atmos Environ 27:2417–2426Google Scholar
  49. Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parametrization of surface fluxes in natural conditions. Theor Appl Climatol 60:163–178CrossRefGoogle Scholar
  50. Philip JR (1961) The theory of heat flux meters. J Geophys Res 66:571–579CrossRefGoogle Scholar
  51. Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120:39–63CrossRefGoogle Scholar
  52. Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  53. Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53Google Scholar
  54. Soong S-T, Tanrikulu S, Wilczak JM, Bao J-W, Martien PT, Michelson SA (2004) Simulation of an ozone episode during the Central California Ozone Study. Part II: CAMx air quality model simulations. 13th Joint conference on the applications of air pollution meteorology with the air and waste management association, Vancouver, BC, August 23–26, 2004. American Meteorological Society, 2.2Google Scholar
  55. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, NY, pp 945–952Google Scholar
  56. Tanrikulu S, Stauffer DR, Seaman NL, Ranzieri AJ (2000) A field-coherence technique for meteorological field-program design for air quality studies Part. II: evaluation in the San Joaquin Valley. J Appl Meteorol 39:317–334CrossRefGoogle Scholar
  57. Tsvang LR, Aligusejnov AK, Perepelkin VG, Sulev MA, Mee’lder ME, Zeleny Y (1987) Opyt zamykanije teplogo balansa v prizemnom sloe i na poverchnosti zemli. Izv Acad Sci USSR, Atmos Ocean Phys 23:3–13 [Attempt to close the energy balance in the near surface layer and at the soil surface]Google Scholar
  58. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesley ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300CrossRefGoogle Scholar
  59. van Dijk A, Kohsiek W, DeBruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmos Ocean Technol 20:143–151CrossRefGoogle Scholar
  60. Verma SB, Kim J, Clement RJ (1992) Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE. J Geophys Res 97:18,629–18,639Google Scholar
  61. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  62. Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar
  63. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  64. Wilczak JM, Bao J-W, Michelson SA, Tanrikulu S, Soong S-T (2004) Simulation of an ozone episode during the Central California Ozone Study. Part I: MM5 meteorological model simulations. In: 13th Joint conference on the applications of air pollution meteorology with the air and waste management association, Vancouver, BC, August 23–26, 2004. American Meteorological Society, 2.1Google Scholar
  65. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi DD, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers TP, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  66. Wyngaard JC (1988) Flow-distortion effects on scalar flux measurements in the surface layer: implications for sensor design. Boundary-Layer Meteorol 42:19–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Steven P. Oncley
    • 1
  • Thomas Foken
    • 2
  • Roland Vogt
    • 3
  • Wim Kohsiek
    • 4
  • H. A. R. DeBruin
    • 5
  • Christian Bernhofer
    • 6
  • Andreas Christen
    • 3
  • Eva van Gorsel
    • 7
  • David Grantz
    • 8
  • Christian Feigenwinter
    • 3
  • Irene Lehner
    • 3
  • Claudia Liebethal
    • 9
  • Heping Liu
    • 10
  • Matthias Mauder
    • 11
  • Andrea Pitacco
    • 12
  • Luis Ribeiro
    • 13
  • Tamas Weidinger
    • 14
  1. 1.National Center for Atmospheric Research/ATDBoulderUSA
  2. 2.University of BayreuthBayreuthGermany
  3. 3.University of BaselBaselSwitzerland
  4. 4.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  5. 5.Meteorology and Air Quality GroupWageningen University and Research CenterWageningenThe Netherlands
  6. 6.Dresden University of TechnologyDresdenGermany
  7. 7.CSIROCanberraAustralia
  8. 8.Kearney Research CenterUniversity of CaliforniaParlierUSA
  9. 9.e-fellows.netMunichGermany
  10. 10.Jackson State UniversityJacksonUSA
  11. 11.Agriculture and Agri-FoodOttawaCanada
  12. 12.University of PadovaPadovaItaly
  13. 13.Bragança Polytechnic InstituteBragançaPortugal
  14. 14.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations