Advertisement

Boundary-Layer Meteorology

, Volume 124, Issue 2, pp 269–290 | Cite as

Divergence of turbulent fluxes in the surface layer: case of a coastal city

  • G. Pigeon
  • A. Lemonsu
  • C. S. B. Grimmond
  • P. Durand
  • O. Thouron
  • V. Masson
Original Paper

Abstract

This study quantifies the processes that take place in the layer between the mean building height and the measurement level of an energy balance micrometeorological tower located in the dense old core of a coastal European city. The contributions of storage, vertical advection, horizontal advection and radiative divergence for heat are evaluated with the available measurements and with a three-dimensional, high-resolution meteorological simulation that had been evaluated against observations. The study focused on a summer period characterized by sea-breeze flows that affect the city. In this specific configuration, it appears that the horizontal advection is the dominant term. During the afternoon when the sea breeze is well established, correction of the sensible heat flux with horizontal heat advection increases the measured sensible heat flux up to 100 W m−2. For latent heat flux, the horizontal moisture advection converted to equivalent latent heat flux suggests a decrease of 50 W m−2. The simulation reproduces well the temporal evolution and magnitude of these terms.

Keywords

ESCOMPTE-UBL Flux divergence Horizontal and vertical advection Sea breeze Urban energy balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different Carboeuroflux sites. Boundary-Layer Meteorol 116:63–94CrossRefGoogle Scholar
  2. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108:397–417CrossRefGoogle Scholar
  3. Baldocchi D, Finnigan J, Wilson K, Paw U KT, Falge E (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorol 96:257–291CrossRefGoogle Scholar
  4. Businger J (1982) The fluxes of specific enthalphy, sensible heat and latent heat near the earth’s surface. J Atmos Sci 39:1889–1893CrossRefGoogle Scholar
  5. Coceal O, Belcher S (2004) A canopy model of mean winds through urban areas. Quart J Roy Meteorol Soc 130:1349–1372CrossRefGoogle Scholar
  6. Cros B, Durand P, Cachier H, Drobinski P, Fréjafon E, Kottmeïer C, Perros PE, Peuch VH, Ponche JL, Robin D, Saïd F, Toupance G, Wortham H (2004) The ESCOMPTE program: an overview. Atmos Res 69:241–279CrossRefGoogle Scholar
  7. Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on short term CO2 budget in and above a forest Canopy. Boundary-Layer Meteorol 113:201–224CrossRefGoogle Scholar
  8. Finnigan J (1999) A comment on the paper by Lee (1998): On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 97:55–64CrossRefGoogle Scholar
  9. Finnigan J (2004) A re-evaluation of long-term flux measurement techniques Part II: coordinate systems. Boundary-Layer Meteorol 113:1–41CrossRefGoogle Scholar
  10. Frangi J, Druilhet A, Durand P, Ide H, Pages J, Tinga A (1992) Energy budget of the Sahelian surface layer. Ann Geophys 10(1/2):25–33Google Scholar
  11. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurments at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res (D Atmos) 109(D24101), doi:  10.1029/2004JD004936.
  12. Ha K, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus 55A: 317–327CrossRefGoogle Scholar
  13. Kohsiek W, Liebethal C, Foken T, Vogt R, Oncley SP, Bernhofer Ch, DeBruin HAR (2007) The Energy Balance Experiment EBEX-2000, Part III: Behaviour and quality of the radiation measurements. Boundary-Layer Meteorol DOI:  10.1007/s10546-006-9135-8
  14. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, de Arellano JV-G (1998) The Méso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulation. Ann Geophys 16:90–109CrossRefGoogle Scholar
  15. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49CrossRefGoogle Scholar
  16. Lee X, Hu X (2002) Forest-air fluxes of carbon, water and energy over non-flat terrain. Boundary-Layer Meteorol 103:277–301CrossRefGoogle Scholar
  17. Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer-Verlag, Heidelberg, 264 ppGoogle Scholar
  18. Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old mediterranean city: Marseille. J Appl Meteorol 43:312–327CrossRefGoogle Scholar
  19. Lemonsu A, Pigeon G, Masson V, Moppert C (2006) Sea–town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface. Theor and Appl Climatol 84(6): 171–178CrossRefGoogle Scholar
  20. Mallet M, Roger J, Despiau S, Dubovik O, Putaud J (2003) Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos Res 69:73–97CrossRefGoogle Scholar
  21. Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94:357–397CrossRefGoogle Scholar
  22. Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41:1011–1026Google Scholar
  23. Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond JM, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet P, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde JP, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant JM, Saïd F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary-layer field campaign in Marseille (UBL/CLU-Escompte): set-up and first results. Boundary-Layer Meteorol 114: 315–365CrossRefGoogle Scholar
  24. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682CrossRefGoogle Scholar
  25. Noilhan J, Mahfouf JF (1996) The ISBA land surface parameterisation scheme. Global Planet Change 13:145–159CrossRefGoogle Scholar
  26. Oke TR (1976) The distinction between the canopy and boundary-layer urbain heat islands. Atmosphere 14:268–277Google Scholar
  27. Oke TR (1988) The urban energy balance. Prog Phys Geogr 12:471–508CrossRefGoogle Scholar
  28. Oke TR (2004) Urban observations. IOM Report No. 81 WMO/TD No. 1250, World Meteorological Organization, Geneva. 49 ppGoogle Scholar
  29. Paw U KT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol 97:487–511CrossRefGoogle Scholar
  30. Pigeon G, Lemonsu A, Long N, Barri J, Durand P, Masson V (2006) Urban thermodynamic island in a coastal city analyzed from an optimized surface network. Boundary-Layer Meteorol 120:315–351CrossRefGoogle Scholar
  31. Raupach MR, Legg BJ, Edwards I (1980) A wind tunnel study of turbulent flow close to regularly arrayed rough surface. Boundary-Layer Meteorol 18:373–397CrossRefGoogle Scholar
  32. Roger J, Mallet M, Dubuisson P, Cachier H, Vermote E, Dubovik O, Despiau S (2006) A synergetic approach for estimating the local direct aerosol forcing: application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d’Emission (ESCOMPTE) experiment. J Geophys Res 111(D13208):13208–13216CrossRefGoogle Scholar
  33. Rotach MW (1993) Turbulence close to a rough urban surface. Part I: Reynolds stress. Boundary-Layer Meteorol 65:1–28CrossRefGoogle Scholar
  34. Rotach MW (2001) Simulation of urban-scale dispersion using a lagrangian stochastic dispersion model. Boundary-Layer Meteorol 99:379–410CrossRefGoogle Scholar
  35. Rotach MW, Calanca P, Weigel A, Andretta M (2003) On the closure of the surface energy balance in highly complex terrain. In: ICAM/MAP. Brig (CH), pp 247–250Google Scholar
  36. Roth M (2000) Review of atmospheric turbulence over cities. Quart J Roy Meteorol Soc 126:941–990CrossRefGoogle Scholar
  37. Savijärvi H (2006) Radiative and turbulent heating rates in the clear-air boundary layer. Quart J Roy Meteorol Soc 132:147–161CrossRefGoogle Scholar
  38. Spronken-Smith RA, Kossmann M, Zawar-Reza P (2006) Where does all the energy go? Surface energy partitioning in suburban Christhurch under stable wintertime conditions. Theor Appl Climatol 84(1–3):137–149CrossRefGoogle Scholar
  39. Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  40. Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39:1679–1699CrossRefGoogle Scholar
  41. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effect due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • G. Pigeon
    • 1
  • A. Lemonsu
    • 1
  • C. S. B. Grimmond
    • 2
  • P. Durand
    • 3
  • O. Thouron
    • 1
  • V. Masson
    • 1
  1. 1.Centre National de Recherches MétéorologiquesMétéo-France/CNRS-GAMEToulouse CedexFrance
  2. 2.Department of GeographyKing’s College LondonLondonUK
  3. 3.Laboratoire d’Aérologie, UMR5560CNRS - Université Paul SabatierToulouse III, ToulouseFrance

Personalised recommendations