Boundary-Layer Meteorology

, Volume 123, Issue 1, pp 29–54 | Cite as

The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods

  • Matthias MauderEmail author
  • Steven P. Oncley
  • Roland Vogt
  • Tamas Weidinger
  • Luis Ribeiro
  • Christian Bernhofer
  • Thomas Foken
  • Wim Kohsiek
  • Henk A. R. De Bruin
  • Heping Liu
Original Paper


The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion—closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several post-field data processing methods were compared. The differences in methodology resulted in deviations of 10% for the sensible heat flux and of 15% for the latent heat flux for an averaging time of 30 min. These disparities were mostly due to different sensor separation corrections and a linear detrending of the data. The impact of different instrumentation on the resulting heat flux estimates was significantly higher. Large deviations from the reference system of up to 50% were found for some sensor combinations. However, very good measurement quality was found for a CSAT3 sonic together with a KH20 krypton hygrometer and also for a UW sonic together with a KH20. If these systems are well calibrated and maintained, an accuracy of better than 5% can be achieved for 30-min values of sensible and latent heat flux measurements. The results from the sonic anemometers Gill Solent-HS, ATI-K, Metek USA-1, and R.M. Young 81000 showed more or less larger deviations from the reference system. The LI-COR LI-7500 open-path H2O/CO2 gas analyser in the test was one of the first serial numbers of this sensor type and had technical problems regarding direct solar radiation sensitivity and signal delay. These problems are known by the manufacturer and improvements of the sensor have since been made.


EBEX-2000 Eddy covariance Energy balance closure Quality control Sensor intercomparison Turbulent fluxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  2. Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: Selected results from the LITFASS-98 experiment. Theor Appl Climatol 73:19–34CrossRefGoogle Scholar
  3. Brook RR (1978) The influence of water vapor fluctuations on turbulent fluxes. Boundary-Layer Meteorol 15:481–487CrossRefGoogle Scholar
  4. Businger JA, Dabberdt WF, Delany AC, Horst TW, Martin CL, Oncley SP, Semmer SR (1990) The NCAR atmospheric-surface turbulent exchange research (ASTER) facility. Bull Amer Meteorol Soc 71:1004–1011Google Scholar
  5. Christen A, van Gorsel E, Andretta M, Calanca M, Rotach M, Vogt R (2000) Intercomparison of ultrasonic anemometers during the MAP-Riviera project. In: 9th Conference on Mountain Meteorology, Aspen, CO, pp 130–131Google Scholar
  6. Culf AD, Foken T, Gash JHC (2004) The energy balance closure problem. In: Kabat P, Claussen M (eds) Vegetation, water, humans and the climate. A New Perspective on an Interactive System. Springer, Berlin, Heidelberg, pp 159–166Google Scholar
  7. Dyer AJ (1981) Flow distortion by supporting structures. Boundary-Layer Meteorol 20:363–372CrossRefGoogle Scholar
  8. Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Bradley EF, Denmead OT, Tsvang LR, Volkov YA, Koprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M, Shaw W (1982) An international turbulence comparison experiment (ITCE-76). Boundary-Layer Meteorol 24:181–209CrossRefGoogle Scholar
  9. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, Part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  10. Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z. Meteorol 41:311–315Google Scholar
  11. Foken T, Oncley SP (1995) Workshop on instrumental and methodical problems of land surface flux measurements. Bull Amer Meteorol Soc 76:1191–1193Google Scholar
  12. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  13. Foken T, Weisensee U, Kirzel H-J, Thiermann V (1997) Comparison of new-type sonic anemometers. In: 12th Symposium on Boundary Layer and Turbulence. Vancouver, BC, Amer. Meteorol. Soc., Boston, pp 356–357Google Scholar
  14. Foken T (1998) Die scheinbar ungeschlossene Energiebilanz am Erdboden—eine Herausforderung an die Experimentelle Meteorologie. Sitzungsberichte der Leibniz-Sozietät 24:131–150Google Scholar
  15. Foken T (1999) Comparison of the sonic anemometer Young Model 81000 during VOITEX-99. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse vol 8, 12 pp (Print, ISSN 1614–8916; Internet, ISSN 1614–8926)Google Scholar
  16. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology. A guide for surface flux measurements. Kluwer, Dordrecht, pp 181–208Google Scholar
  17. Högström U, Smedman A-S (2004) Accuracy of sonic anemometers: laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorol 111:33–54CrossRefGoogle Scholar
  18. Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4:153–157CrossRefGoogle Scholar
  19. Horst TW (2000) On frequency response corrections for eddy covariance flux measurements. Layer Meteorol 94:517–520CrossRefGoogle Scholar
  20. ISO (1993) Statistics—vocabulary and symbols—Part 1: probability and general statistical terms. International Organization for Standardization, Geneva, Switzerland, ISO 3534–1, 61 ppGoogle Scholar
  21. Jegede OO, Foken T (1999) A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns. Theor Appl Climatol 62:31–41CrossRefGoogle Scholar
  22. Kaimal JC, Gaynor JE, Zimmerman HA, Zimmerman GA (1990) Minimizing flow distortion errors in a sonic anemometer. Boundary-Layer Meteorol 53:103–115CrossRefGoogle Scholar
  23. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows their structure and measurement. Oxford university press, New York, NY, 289 ppGoogle Scholar
  24. Laubach J, Teichmann U (1996) Measuring energy budget components by eddy correlation: data corrections and application over low vegetation. Contr Atmos Phys 69:307–320Google Scholar
  25. Lee X, Massman W, Law BE (eds) (2004) Handbook of micrometeorology. A guide for surface flux measurement and analysis. Kluwer Academic Press, Dordrecht, 250 ppGoogle Scholar
  26. Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468CrossRefGoogle Scholar
  27. Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse vol 26, 44 pp (Print: ISSN 1614–8916; Internet: ISSN 1614–8926)Google Scholar
  28. Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond J-M, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde J-P, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant J-M, Sanid F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary-layer field campaign in marseille (ubl/clu-escompte): set-up and first results. Boundary-Layer Meteorol 114:315–365Google Scholar
  29. Miyake M, Stewart RW, Burling HW, Tsvang LR, Koprov BM, Kuznetsov OA (1971) Comparison of acoustic instruments in an atmospheric turbulent flow over water. Boundary-Layer Meteorol 2:228–245CrossRefGoogle Scholar
  30. Mölder M, Klemedtsson L, Lindroth A (2004) Turbulence characteristics and dispersion in a forest—tests of Thomson’s random-flight model. Agric For Meteorol 127:203–222CrossRefGoogle Scholar
  31. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  32. Oncley SP, Foken T, Vogt R, Bernhofer C, Kohsiek W, Liu H, Pitacco A, Grantz D, Ribeiro L, T (2002) The energy balance experiment EBEX-2000. In: 15th Symposium on Boundary Layer and Turbulence. Wageningen, NL, Am Meteorol Soc, 1–4Google Scholar
  33. Oncley SP, Foken T, Vogt R, Kohsiek W, de Bruin H, Bernhofer C, Christen A, Grantz D, Lehner E, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol (in press)Google Scholar
  34. Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  35. Tanner BD, Campbell GS (1985) A krypton hygrometer for measurement of atmospheric water vapor concentration. In: Moisture and humidity. Instrument Society of America, Research Triangle Park, NC, pp 609–612Google Scholar
  36. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York NY, pp 945–952Google Scholar
  37. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. In: 15th Conference on Turbulence and Boundary Layers, Wageningen, NL, Am Meteorol Soc, pp 129–132Google Scholar
  38. Tsvang LR, Koprov BM, Zubkovskii SL, Dyer AJ, Hicks B, Miyake M, Stewart RW, McDonald JW (1973) A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol 3:499–521CrossRefGoogle Scholar
  39. Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J, Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol 31:325–348CrossRefGoogle Scholar
  40. van Dijk A, Kohsiek W, DeBruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmos Oceanic Tech 20:143–151CrossRefGoogle Scholar
  41. Vogt R (1995) Theorie, Technik und Analyse der experimentellen Flussbestimmung am Beispiel des Hartheimer Kiefernwaldes. University of Basel, Basel, Switzerland, Stratus vol 3, 101 ppGoogle Scholar
  42. Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar
  43. Webb EK (1982) On the correction of flux measurements for effects of heat and water vapour transfer. Boundary-Layer Meteorol 23:251–254CrossRefGoogle Scholar
  44. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  45. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  46. Wyngaard JC (1981) The effects of probe-induced flow distortion on atmospheric turbulence measurements. J Appl Meteorol 20:784–794CrossRefGoogle Scholar
  47. Wyngaard JC, Zhang SF (1985) Transducer-shadow effects on turbulence spectra measured by sonic anemometers. J Atmos Oceanic Tech 2:548–558CrossRefGoogle Scholar
  48. Zhang SF, Wyngaard JC, Businger JA, Oncley SP (1986) Response characteristics of the U.W. sonic anemometer. J Atmos Oceanic Tech 2:548–558Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  • Matthias Mauder
    • 1
    • 2
    Email author
  • Steven P. Oncley
    • 3
  • Roland Vogt
    • 4
  • Tamas Weidinger
    • 5
  • Luis Ribeiro
    • 6
  • Christian Bernhofer
    • 7
  • Thomas Foken
    • 8
  • Wim Kohsiek
    • 9
  • Henk A. R. De Bruin
    • 10
  • Heping Liu
    • 11
    • 12
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Agriculture and Agri-Food CanadaOttawaCanada
  3. 3.National Center for Atmospheric Research BoulderBoulderUSA
  4. 4.University of BaselBaselSwitzerland
  5. 5.Eötvös Loránd UniversityBudapestHungary
  6. 6.Bragança Polytechnic InstituteBragançaPortugal
  7. 7.Dresden University of TechnologyDresdenGermany
  8. 8.University of BayreuthBayreuthGermany
  9. 9.KNMI Royal Dutch Meteorological InstituteUtrechtThe Netherlands
  10. 10.Wageningen UniversityWageningenThe Netherlands
  11. 11.City University of Hong KongKowloonP. R. China
  12. 12.Jackson State UniversityJacksonUSA

Personalised recommendations