Boundary-Layer Meteorology

, Volume 122, Issue 2, pp 397–416 | Cite as

Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope

  • Albin Hammerle
  • Alois Haslwanter
  • Michael Schmitt
  • Michael Bahn
  • Ulrike Tappeiner
  • Alexander Cernusca
  • Georg WohlfahrtEmail author
Orginal Paper


Carbon dioxide, latent and sensible heat fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley in Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface-layer flows. The resulting high quality dataset comprised 36% of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high quality dataset was further assessed by two independent tests: (i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers, and (ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO2 exchange measured by the eddy covariance method agreed reasonably well with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28% and 29%, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain.


CARBOMONT project Complex terrain Energy balance closure Footprint model Quality control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell RF, Svejcar T, Bates J, Saliendra NZ, Johnson DA (2001) Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. Agric For Meteorol 108:153–161CrossRefGoogle Scholar
  2. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwarld T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forest: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  3. Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315CrossRefGoogle Scholar
  4. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108:397–417CrossRefGoogle Scholar
  5. Aubinet M, Berbigier P, Bernhofer Ch, Cescatti A, Feigenwinter C, Granier A, Grünewald Th.K., Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different Carboeuroflux sites. Boundary-Layer Meteorol 116:63–94CrossRefGoogle Scholar
  6. Bätzing W (1996) Landwirtschaft im Alpenraum-unverzichtbar aber zukunftslos?. In: Bätzing W (eds). Landwirtschaft im Alpenraum—unverzichtbar, aber zukunftslos? Einealpenweite Bilanz der aktuellen Probleme und der möglichen Lösungen. Blackwell Wissenschaftsverlag, Berlin, pp. 9–11Google Scholar
  7. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492CrossRefGoogle Scholar
  8. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340CrossRefGoogle Scholar
  9. Baldocchi DD, Finnigan JJ, Wilson KW, Paw UKT, Falge E (2000) On measuring net ecosystem carbon exchange in complex terrain over tall vegetation. Boundary-Layer Meteorol 96:257–291CrossRefGoogle Scholar
  10. Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger JW, Oechel W, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Amer Meteorol Soc 82:2415–2435CrossRefGoogle Scholar
  11. Barford CC, Wofsy SC, Goulden ML, Munger JW, Hammond Pyle E, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long and short term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691CrossRefGoogle Scholar
  12. Bitterlich W, Cernusca A (1999) Stubai Valley composite landscape, Tyrol, Austria. In: Cernusca A, Tappeiner U, Bayfield N (eds). Land-use changes in European mountain ecosystems. ECOMONT—concepts and results, Blackwell Wissenschafts-Verlag, Berlin, pp 35–45Google Scholar
  13. Cernusca A, Tappeiner U, Bayfield N (1999) Land-use changes in European mountain ecosystems. ECOMONT—concepts and results. Blackwell Wissenschaftsverlag, Berlin, 368 pp.Google Scholar
  14. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of ecosystem carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19CrossRefGoogle Scholar
  15. Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R, Drake BG (2003) Cross validation of open-top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub-oak ecosystem. Global Change Biol 9:84–95CrossRefGoogle Scholar
  16. Dugas WA, Reicosky DC, Kiniry JR (1997) Chamber and micrometeorological measurements of CO2 and H2O fluxes for three C4 grasses. Agric For Meteorol 83:113–133CrossRefGoogle Scholar
  17. Ehman JL, Schmid HP, Randolph JC, Grimmond CSB, Hanson PJ, Wayson CA, Cropley FD (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon sequestration in a mid-latitude deciduous forest. Global Change Biol 8:575–589CrossRefGoogle Scholar
  18. Feigenwinter C, Bernhofer Ch, Vogt R (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorol 113:201–224CrossRefGoogle Scholar
  19. Finnigan JJ (2004a) Advection and modelling. In: Lee X, Massman W, Law B (eds). Handbook of micrometeorology. Kluwer Academic Publishers, Dordrecht, pp 209–244Google Scholar
  20. Finnigan JJ (2004b) The footprint concept in complex terrain. Agric For Meteorol 127:117–129CrossRefGoogle Scholar
  21. Finnigan JJ, Belcher SE (2004) Flow over a hill covered with a plant canopy. Quart J Roy Meteorol Soc 130:1–29CrossRefGoogle Scholar
  22. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  23. Foken Th, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  24. Foken Th, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds). Handbook of micrometeorology. Kluwer Academic Publishers, Dordrecht, pp 181–208Google Scholar
  25. Froelich NJ, Schmid HP, Grimmond CSB, Su H-B, Oliphant AJ (2005) Flow divergence and density flows above and below a deciduous forest Part I: Non-zero mean vertical wind above canopy. Agric For Meteorol 133:140–152CrossRefGoogle Scholar
  26. Garcia-Ruiz JM, Lasanta T, Ruiz-Flano P, Ortigosa L, White, S, Gonzalez C, Marti C (1996) Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landscape Ecol 11:267–277CrossRefGoogle Scholar
  27. Gash JHC, Dolman AJ (2003) Sonic anemometer (co)sine response and flux measurement I. potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric For Meteorol 119:195–207CrossRefGoogle Scholar
  28. Geissbühler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96:317–392CrossRefGoogle Scholar
  29. Goudriaan J, Van Laar HH (1994) Modelling potential crop growth processes. Kluwer Academic Publishers, Dordrecht, 238 ppGoogle Scholar
  30. Gu L, Falge E, Boden T, Baldocchi D, Black TA, Saleska S, Suni T, Verma S, Vesala T, Wofsy S, Xu L (2005) Objective threshold determination for nighttime eddy flux filtering. Agric For Meteorol 128:179–197CrossRefGoogle Scholar
  31. Halldin S, Lindroth A (1992) Errors in net radiometry: Comparison and evaluation of six radiometer designs. J Atmos Ocean Tech 9:762–783CrossRefGoogle Scholar
  32. Henne S, Furger M, Nyeki S, Steinbacher M, Neininger B, de Wekker SFJ, Dommen J, Spichtinger N, Stohl A, Prevot ASH (2004) Quantification of topographic venting of boundary layer air to the free troposphere. Atmos Chem Phys 4:497–509CrossRefGoogle Scholar
  33. Högström U, Smedman A-S (2003) Accuracy of sonic anemometers: Laminar wind tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorol 111:33–54CrossRefGoogle Scholar
  34. Hsieh C-I, Katul G, Chi T-W (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resources 23:765–772CrossRefGoogle Scholar
  35. Jackson PS, Hunt JCR (1975) Turbulent wind flow over a low hill. Quart J Roy Meteorol Soc 101:929–955CrossRefGoogle Scholar
  36. Kaimal JC, Wyngaard JC (1990) The Kansas and Minnesota experiments. Boundary-Layer Meteorol 50:31–47CrossRefGoogle Scholar
  37. Kaimal JC, Finnigan JJ (1994) Atmospheric Boundary Layer Flows. Oxford University Press, Oxford, 289 ppGoogle Scholar
  38. Katul GG, Finnigan JJ, Poggi D, Leuning R, Belcher S (2006) The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Boundary-Layer Meteorol, 118: 189–216CrossRefGoogle Scholar
  39. Kominami Y, Miyama T, Tamai K, Nobuhiro R, Goto Y (2003) Characteristics of CO2 flux over a forest on complex topography. Tellus 55B:313–312Google Scholar
  40. Kristensen L, Mann J, Oncley SP, Wyngaard JC (1997) How close is close enough when measuring scalar fluxes with displaced sensors. J Atmos Oceanic Tech 14:814–821CrossRefGoogle Scholar
  41. Lee X, Hu X (2002) Forest-air fluxes of carbon and energy over non-flat terrain. Boundary-Layer Meteorol 103:277–301CrossRefGoogle Scholar
  42. Lee X, Finnigan J, Paw UKT (2004) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds). Handbook of Micrometeorology. Kluwer Academic Publishers, Dordrecht, pp 33–66Google Scholar
  43. Loescher HW, Ocheltree T, Tanner B, Swiatek E, Dano B, Wong J, Zimmerman G, Campbell J, Stock C, Jacobsen L, Shiga Y, Kollas J, Liburdy J, Law BE (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer-thermometers. Agric For Meteorol 133:119–139CrossRefGoogle Scholar
  44. Marcolla B, Cescatti A, Montagnani L, Manca G, Kerschbaumer G, Minerbi S (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agric For Meteorol 130:193–206CrossRefGoogle Scholar
  45. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198CrossRefGoogle Scholar
  46. Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113:121–144CrossRefGoogle Scholar
  47. Massman WJ, Clement R (2004) Uncertainty in eddy covariance flux estimates resulting from spectral attenuation. In: Lee X, Massman W, Law B (eds). Handbook of Micrometeorology. Kluwer Academic Publishers, Dordrecht, pp 67–100Google Scholar
  48. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  49. Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agric For Meteorol 136:19–30CrossRefGoogle Scholar
  50. Nie D, Demetriades-Shah T, Kanemasu ET (1992) Surface energy fluxes on four slope sites during FIFE 1988. J Geophy Res 97:18641–18649Google Scholar
  51. Novick KA, Stoy PC, Katul GG, Ellsworth DS, Siqueira MBS, Juang J, Oren R (2004) Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138:259–274CrossRefGoogle Scholar
  52. Raupach MR, Finnigan JJ (1997) The influence of topography on meteorological variables and surface-atmosphere interactions. J Hydrol 190:182–213CrossRefGoogle Scholar
  53. Schmid HP (1997) Experimental design for flux measurements: matching the scales of observations and fluxes. Agric For Meteorol 87:179–200CrossRefGoogle Scholar
  54. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspectives. Agric For Meteorol 113:159–183CrossRefGoogle Scholar
  55. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156CrossRefGoogle Scholar
  56. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  57. Turnipseed AA, Anderson D, Blanken P, Monson RK (2002) Energy balance above a high-elevation subalpine forest in complex topography. Agric For Meteorol 110:177–201CrossRefGoogle Scholar
  58. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain Part 1: Canopy and local effects. Agric For Meteorol 119:1–21CrossRefGoogle Scholar
  59. Turnipseed AA, Anderson DE, Burns S, Blanken PD, Monson RK (2004) Airflows and turbulent flux measurements in mountainous terrain. Part 2: Mesoscale effects. Agric For Meteorol 125:187–205CrossRefGoogle Scholar
  60. Van der Molen MK, Gash JHC, Elbers JA (2004) Sonic anemometer (co)sine response and flux measurement II. The effect of introducing an angle of attack dependent calibration. Agric For Meteorol 122:95–109Google Scholar
  61. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar
  62. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. Meteorol Mono 23:5–42Google Scholar
  63. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  64. Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer Ch, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  65. Wohlfahrt G (2004) Modelling fluxes and scalar concentrations of CO2, H2O and sensible heat within and above a mountain meadow canopy: a comparison of three Lagrangian models and three parameterisation options for the Lagrangian time scale. Boundary-Layer Meteorol 113:43–80CrossRefGoogle Scholar
  66. Wohlfahrt G, Anfang Ch, Bahn M, Haslwanter A, Newesely Ch, Schmitt M, Drösler M, Pfadenhauer J, Cernusca A (2005a) Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric For Meteorol 128:141–162CrossRefGoogle Scholar
  67. Wohlfahrt G, Bahn M, Haslwanter A, Newesely Ch, Cernusca A (2005b) Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Meteorol 130:13–25CrossRefGoogle Scholar
  68. Yi C, Monson RK, Zhai Z, Anderson DE, Lamb B, Allwine G, Turnipseed AA, Burns SP (2005) Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J Geophy Res 110:D22303, doi:10.1029/2005JD006282, 2005Google Scholar
  69. Zamolodchikov DG, Karelin DV, Ivaschenko AI, Oechel WC, Hastings SJ (2003) CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus 55B:897–892Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Albin Hammerle
    • 1
  • Alois Haslwanter
    • 1
  • Michael Schmitt
    • 1
  • Michael Bahn
    • 1
  • Ulrike Tappeiner
    • 1
  • Alexander Cernusca
    • 1
  • Georg Wohlfahrt
    • 1
    Email author
  1. 1.Institut für ÖkologieUniversität InnsbruckInnsbruckAustria

Personalised recommendations