Boundary-Layer Meteorology

, Volume 121, Issue 1, pp 67–88 | Cite as

Processing and quality control of flux data during LITFASS-2003

  • Matthias Mauder
  • Claudia Liebethal
  • Mathias Göckede
  • Jens-Peter Leps
  • Frank Beyrich
  • Thomas Foken
Original Paper

Abstract

Different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain—Fluxes between Atmosphere and Surface: a long term Study). Eddy-covariance measurements of the latent heat flux were the main focus of the QA/QC efforts. The results of a turbulence sensor intercomparison experiment showed deviations between the different eddy-covariance systems on the order of 15%, or less than 30 W m−2, for the latent heat flux and 5%, or less than 10 W m−2, for the sensible heat flux. In order to avoid uncertainties due to the post-processing of turbulence data, a comprehensive software package was used for the analysis of experimental data from LITFASS-2003, including all necessary procedures for corrections and quality control. An overview of the quality test results shows that for most of the days more than 80% of the available latent heat flux data are of high quality so long as there are no instrumental problems. The representativeness of a flux value for the target land-use type was analysed using a stochastic footprint model. Different methods to calculate soil heat fluxes at the surface are discussed and a sensitivity analysis is conducted to select the most robust method for LITFASS-2003. The lack of energy balance closure, which was found for LITFASS-2003, can probably be attributed to the presence of low-frequency flux contributions that cannot be resolved with an averaging time of 30 min. Though the QA/QC system has been developed for the requirements of LITFASS-2003, it can also be applied to other experiments dealing with similar objectives.

Keywords

Eddy covariance Ground heat flux LITFASS-2003 Quality control Radiation fluxes Turbulent fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold K, Ziemann A, Raabe A, Spindler G (2004) Acoustic tomography and conventional meteorological measurements over heterogeneous surfaces. Meteorol Atmos Phys 85:175–186CrossRefGoogle Scholar
  2. Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment. Theor Appl Climatol 73:19–34CrossRefGoogle Scholar
  3. Beyrich F, Leps J.-P, Mauder M, Foken T, Weisensee U, Bange J, Zittel P, Huneke S, Lohse H, Mengelkamp H.-T, Bernhofer C, Queck R, Meijninger WML, Kohsiek W, Lüdi A, Peters G, Münster H (2006) Area-averaged surface fluxes over the heterogeneous LITFASS area from measurements. Boundary-Layer Meteorol (this issue)Google Scholar
  4. Beyrich F, Mengelkamp H.-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol (this issue)Google Scholar
  5. Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University Press, New York, 290 ppGoogle Scholar
  6. Burns SP, Sun J, Delany AC, Semmer SR, Oncley SP, Horst TW (2003) A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. J Atmos Oceanic Tech 20:348–361CrossRefGoogle Scholar
  7. Culf AD, Foken T, Gash JHC (2004) The energy balance closure problem. In: Kabat P, Claussen M. (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin, Heidelberg, pp 159–166Google Scholar
  8. Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol 47:55–69CrossRefGoogle Scholar
  9. Dyer AJ (1981) Flow distortion by supporting structures. Boundary-Layer Meteorol 20:363–372CrossRefGoogle Scholar
  10. Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Bradley EF, Denmead OT, Tsvang LR, Volkov YA, Koprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M, Shaw W (1982) An international turbulence comparison experiment (ITCE-76). Boundary-Layer Meteorol 24:181–209CrossRefGoogle Scholar
  11. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  12. Foken T (1999) Comparison of the sonic anemometer Young Model 81000 during VOITEX-99. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 8:12 pp. (Print, ISSN 1614–8916; Internet, ISSN 1614–8926)Google Scholar
  13. Foken T (2003) Angewandte Meteorologie. Mikrometeorologische Methoden. Springer, Heidelberg, 289 ppGoogle Scholar
  14. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology. A guide for surface flux measurements. Kluwer, Dordrecht, pp 181–208Google Scholar
  15. Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Raasch S, de Bruin HAR, Meijninger WML, Bange J (2006) Attempt to close the energy balance for the LITFASS-2003 experiment. In: 17th symposium on boundary layers and turbulence. San Diego, CA, Am Meteorol Soc paper 1.11Google Scholar
  16. Foken T, Oncley SP (1995) Workshop on instrumental and methodical problems of land surface flux measurements. Bull Amer Meteorol Soc 76:1191–1193Google Scholar
  17. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  18. Foken T, Weisensee U, Kirzel H.-J, Thiermann V (1997) Comparison of new-type sonic anemometers. In: 12th symposium on boundary layer and turbulence, Vancouver, BC, Amer Meteorol Soc, Boston, pp 356–357Google Scholar
  19. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2005) Some aspects of the energy balance closure problem. Geophys Res Abs 7Google Scholar
  20. Friehe CA (1991) Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J Geophys Res 96:8593–8609CrossRefGoogle Scholar
  21. Fuchs M (1986) Heat flux, In: Klute A (ed) Methods of Soil analysis, part 1: Physical and mineralogical methods. Madison/WI, pp 957–968Google Scholar
  22. Fuehrer PL, Friehe CA (2002) Flux corrections revisited. Boundary-Layer Meteorol 102:415–457CrossRefGoogle Scholar
  23. Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric For Meteorol 127:175–188CrossRefGoogle Scholar
  24. Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of footprint-based approach for the characterisation of complex measurement sites. Boundary-Layer Meteorol DOI: 10.1007/s10546-005-6435-3Google Scholar
  25. Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol, 341–356Google Scholar
  26. Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4:153–157CrossRefGoogle Scholar
  27. ISO: 1993, Statistics—vocabulary and symbols—Part 1: probability and general statistical terms, International Organization for Standardization, Geneva, Switzerland, ISO 3534–1, 61 ppGoogle Scholar
  28. Jegede OO, Foken T (1999) A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns. Theor Appl Climatol 62:31–41CrossRefGoogle Scholar
  29. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, NY, 289 ppGoogle Scholar
  30. Kaimal JC, Gaynor JE, Zimmerman HA, Zimmerman GA (1990) Minimizing flow distortion errors in a sonic anemometer. Boundary-Layer Meteorol 53:103–115CrossRefGoogle Scholar
  31. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Quart J Roy Meteorol Soc 98:563–589CrossRefGoogle Scholar
  32. Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110:381–404CrossRefGoogle Scholar
  33. Kanemasu ET, Verma SB, Smith EA, Fritschen LY, Wesely M, Fild RT, Kustas WP, Weaver H, Steawart YB, Geney R, Panin GN, Moncrieff JB (1992) Surface flux measurements in FIFE: An overview. J Geophys Res 97:18547–18555Google Scholar
  34. Kasten F (1985) Maintenance, calibration and comparison. Instruments and observ. Methods, Geneve, WMO Report vol 23, pp 65–84Google Scholar
  35. Lee X, Massman W, Law BE (eds) (2004) Handbook of micrometeorology. A guide for surface flux measurement and analysis. Kluwer Academic Press, Dordrecht, 250 ppGoogle Scholar
  36. Lenschow DH, Kristensen L (1985) Uncorrelated noise in turbulence measurements. J Atmos Oceanic Tech 2:68–81CrossRefGoogle Scholar
  37. Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atmos Oceanic Tech 11:661–673CrossRefGoogle Scholar
  38. Liebethal C (2003) Strahlungsmessgerätevergleich während des Experiments STINHO-1. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse vol 21, 28 pp (Print, ISSN 1614–8916)Google Scholar
  39. Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109:99–106CrossRefGoogle Scholar
  40. Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes. Corrigendum. Boundary-Layer Meteorol 113:301CrossRefGoogle Scholar
  41. Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agric For Meteorol 132:253–262CrossRefGoogle Scholar
  42. Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468CrossRefGoogle Scholar
  43. Mahli Y, McNoughton KG, von Randow C (2004) Low frequency atmospheric transport and surface flux measurements. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology. A guide for surface flux measurement and analysis, Kluwer, Dordrecht, pp 101–118Google Scholar
  44. Mauder M (2002) Auswertung von Turbulenzmessgerätevergleichen unter besonderer Berücksichtigung von EBEX-2000. Master Thesis, Abt. Mikrometeorologie, Universität Bayreuth, Bayreuth, 86 ppGoogle Scholar
  45. Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 26:44 pp (Print, ISSN 1614–8916; Internet, ISSN 1614–8926)Google Scholar
  46. Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, de Bruin HAR (2006) Scintillometer fluxes of sensible and latent heat over a heterogeneous land surface - a contribution to LITFASS-2003. Boundary-Layer Meteorol (this issue)Google Scholar
  47. Mengelkamp H.-T, Beyrich F, Heinemann G, Ament F, Bange J, Berger FH, Bösenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen K.-P, Kerschgens M, Kohsiek W, Leps J.-P, Liebethal C, Mauder M, Meijninger WML, Raasch S, Simmer C, Spieß T, Tittebrand A, Uhlenbrock J, Zittel P (2006) Evaporation over a heterogeneous land surface: the EVA_GRIPS project. Bull Amer Meteorol Soc (in press)Google Scholar
  48. Miyake M, Stewart RW, Burling HW, Tsvang LR, Koprov BM, Kuznetsov OA (1971) Comparison of acoustic instruments in an atmospheric turbulent flow over water. Boundary-Layer Meteorol 2:228–245CrossRefGoogle Scholar
  49. Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol 188–189:589–611CrossRefGoogle Scholar
  50. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  51. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Amer Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  52. Oncley SP (1989) Flux parametrization techniques in the atmospheric surface layer. Ph.D. Thesis, University of California, Irvine, CA, 202 ppGoogle Scholar
  53. Oncley SP, Foken T, Vogt R, Bernhofer C, Kohsiek W, Liu H, Pitacco A, Grantz D, Ribeiro L, Weidinger T (2002) The energy balance experiment EBEX-2000. In: 15th symposium on boundary layer and turbulence, Wageningen, NL, Am Meteorol Soc 1–4Google Scholar
  54. Philipona R, Fröhlich C, Betz C (1995) Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Appl Optics 34:1598–1605CrossRefGoogle Scholar
  55. Raabe A (1983) On the relation between the drag coefficient and fetch above the sea in the case of off-shore wind in the near shore zone. Z Meteorol 33:363–367Google Scholar
  56. Rannik U, Markkanen T, Raittila J, Hari P, Vesala T (2003) Turbulence statistics inside and over forest: Influence on footprint prediction. Boundary-Layer Meteorol 109:163–189CrossRefGoogle Scholar
  57. Sakai RK, Fitzjarrald DR, Moore KE (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192CrossRefGoogle Scholar
  58. Savelyev SA, Taylor PA (2005) Internal boundary layers: I. Height formulae for neutral and diabatic flows. Boundary-Layer Meteorol 115:1–25CrossRefGoogle Scholar
  59. Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  60. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Academic Publishers, 666 ppGoogle Scholar
  61. Tanner BD, Campbell GS (1985) A krypton hygrometer for measurement of atmospheric water vapor concentration. In: Moisture and humidity. Instrument Society of America, Research Triangle Park, NC, 609–612Google Scholar
  62. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, NY, pp 945–952Google Scholar
  63. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556CrossRefGoogle Scholar
  64. Tsvang LR, Koprov BM, Zubkovskii SL, Dyer AJ, Hicks B, Miyake M, Stewart RW, McDonald JW (1973) A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol 3:499–521CrossRefGoogle Scholar
  65. Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J, Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol 31:325–348CrossRefGoogle Scholar
  66. Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol 55:141–160CrossRefGoogle Scholar
  67. van Dijk A (2002) Extension to 3D of “The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface” by Kristensen and Fitzjarrald. J Atmos Oceanic Tech 19:80–82CrossRefGoogle Scholar
  68. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526CrossRefGoogle Scholar
  69. Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar
  70. Weisensee U, Beyrich F, Leps J.-P (2003) Integration of humidity fluctuation sensors into the Lindenberg boundary layer measurement facilities: Experiences, problems, and future requirements. In: 12th Symposium on meteorological observations and instrumentation. Long Beach, CA, USA, paper 14.1, pp 275–278Google Scholar
  71. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Meteorol 99:127–150Google Scholar
  72. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  73. Wyngaard JC, Zhang SF (1985) Transducer-shadow effects on turbulence spectra measured by sonic anemometers. J Atmos Oceanic Tech 2:548–558CrossRefGoogle Scholar
  74. Zhang SF, Wyngaard JC, Businger JA, Oncley SP (1986) Response characteristics of the U.W. sonic anemometer. J Atmos Oceanic Tech 2:548–558Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Matthias Mauder
    • 1
  • Claudia Liebethal
    • 1
  • Mathias Göckede
    • 1
  • Jens-Peter Leps
    • 2
  • Frank Beyrich
    • 2
  • Thomas Foken
    • 1
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.German Meteorological ServiceMeteorological Observatory LindenbergLindenbergGermany

Personalised recommendations