Boundary-Layer Meteorology

, Volume 120, Issue 2, pp 229–255 | Cite as

Near-Surface Coherent Structures and The Vertical Momentum Flux in a Large-Eddy Simulation of the Neutrally-Stratified Boundary Layer

  • Ralph C. Foster
  • Francois Vianey
  • Philippe Drobinski
  • Pierre Carlotti


The near-surface flow of a well-resolved large-eddy simulation of the neutrally-stratified planetary boundary layer is used to explore the relationships between coherent structures and the vertical momentum flux. The near-surface flow is characterized by transient streaks, which are alternating bands of relatively higher and lower speed flow that form parallel to the mean shear direction in the lower part of the boundary layer. Although individual streaks are transient, the overall flow is in a quasi-equilibrium state in which the streaks form, grow, decay and regenerate over lifetimes on the order of tens of minutes. Coupled with the streaky flow is an overturning circulation with alternating bands of updrafts and downdrafts approximately centered on the streaks. The surface stress is dominated by upward ejections of slower moving near-surface air and downward sweeps of higher speed air from higher in the boundary layer. Conditional sampling of the ejection and sweep events shows that they are compact, coherent structures and are intimately related to the streaks: ejections (sweeps) preferentially form in the updrafts (downdrafts) of the three-dimensional streak flow. Hence, consistent with other recent studies, we propose that the streak motion plays an important role in the maintenance of the surface stress by establishing the preferential conditions for the ejections and sweeps that dominate the surface stress. The velocity fluctuation spectra in the model near the surface have a k −1 spectral slope over an intermediate range of wavenumbers. This behaviour is consistent with recent theoretical predictions that attempt to evaluate the effects of organized flow, such as near-surface streaks, on the variance spectra.


Atmospheric surface layer Ejections Large-eddy simulation Streaks Sweeps Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian R.J., Meinhart C.D., and Tomkins C.D. (2000). ‘Vortex Organisation in the Outer Region of the Turbulent Boundary Layer’. J. Fluid Mech. 422:1–54CrossRefGoogle Scholar
  2. Antonia R.A., Rajagopalan S., and Chambers A.J. (1983). ‘Conditional Sampling of Turbulence in the Atmospheric Surface Layer’. J. Climate Appl. Meteorol. 22:69–78CrossRefGoogle Scholar
  3. Benaïssa A., Liandrat J., and Anselmet F. (1995). ’Spectral Contribution of Coherent Motions in a Turbulent Boundary Layer’. Eur. J. Mech. B/Fluids 14:697–718Google Scholar
  4. Boppe R.S. and Neu W.L. (1995). ‘Quasi-Coherent Structures in the Marine Atmospheric Surface Layer’. J. Geophys. Res. 100:20635–20648CrossRefGoogle Scholar
  5. Boppe R.S., Neu W.L., and Shuai H. (1999). ‘Large-Scale Motions in the Marine Atmospheric Surface Layer’. Boundary-Layer Meteorol. 92:165–183CrossRefGoogle Scholar
  6. Carlotti P. (2002). ‘Two Point Properties of Atmospheric Turbulence Very Close to the Ground: Comparison of a High resolution LES with Theoretical Models’. Boundary-Layer Meteorol. 104:381–410CrossRefGoogle Scholar
  7. Carlotti P. and Drobinski P. (2004). ‘Length-Scales in Wall-Bounded High Reynolds Number Turbulence’. J. Fluid Mech. 516:239–264CrossRefGoogle Scholar
  8. Cava D., Schipa S. and Giostra U. (2005). ‘Investigation of Low Frequency Perturbations Induced by a Steep Obstacle’. Boundary-Layer Meteorol. 115:27–45CrossRefGoogle Scholar
  9. Chambers A.J. and Antonia R.A. (1981). ‘Wave-Induced Effect on the Reynolds Shear Stress and Heat Flux in the Marine Surface Layer’. J. Phys. Oceanogr. 11:116–121CrossRefGoogle Scholar
  10. Cuxart J., Bougeault P., and Redelsperger J.L. (2000). ‘A Multiscale Turbulence Scheme Apt for LES and Mesoscale Modelling’. Quart. J. Roy. Meteorol. Soc. 126:1–30CrossRefGoogle Scholar
  11. Deardorff J. W. (1972). ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’. J. Atmos. Sci. 29: 91–115CrossRefGoogle Scholar
  12. Drobinski P. and Foster R.C. (2003). ‘On the Origin of Near-Surface Streaks in the Neutrally-Stratified Planetary Boundary Layer’. Boundary-Layer Meteorol. 108:247–256CrossRefGoogle Scholar
  13. Drobinski P., Brown R.A., Flamant P.H., and Pelon J. (1998). ‘Evidence of Organized Large Eddies by Ground-Based Doppler Lidar, Sonic Anemometer and Sodar’. Boundary-Layer Meteorol. 88:343–361CrossRefGoogle Scholar
  14. Drobinski P., Carlotti P., Newsom R.K., Banta R.M., Foster R.C., and Redelsperger J.L. (2004). ‘The Structure of the Near-Neutral Surface Layer’. J. Atmos. Sci. 61:699–714CrossRefGoogle Scholar
  15. Etling D. and Brown R.A. (1993). ‘Roll Vortices in the Planetary Boundary Layer: A Review’. Boundary-Layer Meteorol. 21:215–248CrossRefGoogle Scholar
  16. Farge M. (1992). ‘Wavelet Transforms and their Applications to Turbulence’. Ann. Rev. Fluid Mech. 24:395–457CrossRefGoogle Scholar
  17. Foster, R. C. and Drobinski, P.: 2000, ‘Near-Surface Streaks: Comparison of LES with Theory’, Proceedings 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, USA, A.M.S., pp. 499–502.Google Scholar
  18. Foster R.C. (1997). ‘Structure and Energetics of Optimal Ekman Layer Perturbations’. J. Fluid Mech. 333:97–123CrossRefGoogle Scholar
  19. Ganapathisubramani B., Longmire E.K., and Marusic I. (2003). ‘Characteristics of Vortex Packets in Turbulent Boundary Layers’. J. Fluid Mech. 478:35–46CrossRefGoogle Scholar
  20. Ganapathisubramani B., Hutchins N., Hambleton W.T., Longmire E.K., and Marusic I. (2005). ‘Investigation of Large-Scale Coherence in a Turbulent Boundary Layer using Two-Point Correlations’. J. Fluid Mech. 524:57–80CrossRefGoogle Scholar
  21. Giostra U., Cava D., and Schipa S. (2002). ‘Structure Functions in a Wall-Turbulent Shear Flow’. Boundary-Layer Meterol. 103:337–359CrossRefGoogle Scholar
  22. Högström U., Hunt J.C.R., and Smedman A.S. (2002). ‘Theory and Measurements for Turbulence Spectra and Variances in the Atmospheric Neutral Surface Layer’. Boundary-Layer Meteorol. 103:101–124CrossRefGoogle Scholar
  23. Högström U. (1990). ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Theory Formulations for Neutral Conditions’. J. Atmos. Sci. 47:1949–1972CrossRefGoogle Scholar
  24. Hommema S.E. and Adrian R.J. (2003). ‘Packet Structure of Surface Eddies in the Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 106:35–60CrossRefGoogle Scholar
  25. Hunt J.C.R. and Morrison J.F. (2000). ‘Eddy Structure in Turbulent Boundary Layers’. Eur. J. Mech. B – Fluids 19:673–694Google Scholar
  26. Hunt J.C.R. and Carlotti P. (2001). ‘Statistical Structure at the Wall of the High Reynolds Number Turbulent Boundary Layer’. Flow, Turbulence, Combustion 66:453–475CrossRefGoogle Scholar
  27. Kader, B. A. and Yaglom, A. M.: 1989, ‘Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstable Thermal Stratification’, in O. Métais and M. Lesieur (eds.), Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics, 1989 grenoble, France.Google Scholar
  28. Katul G., Chu C.R., Parlange M.B., Albertson J.D., and Ortenburger T.A. (1995). ‘The Low Wave Number Spectral Characteristics of Turbulent Velocity and Temperature in the Unstable Atmospheric Surface Layer’. J. Geophys. Res. 100:14243–14255CrossRefGoogle Scholar
  29. Katul, G., Hsieh, C. I., Kuhn, G., Ellsworth, D., and Nie, D.: 1997, ‘Turbulent Eddy Motion at the Forest-Atmosphere Interface’, J. Geophys. Res. 102(D12), 13,409–13,421Google Scholar
  30. Khanna S. and Brasseur J.G. (1998). ‘Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer’. J. Atmos. Sci. 55:710–743CrossRefGoogle Scholar
  31. Kim K.C. and Adrian R.J. (1999). ‘Very Large-Scale Motion in the Outer Layer’. Phys. Fluids 11:417–422CrossRefGoogle Scholar
  32. Lafore J.P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Héreil P., Mascart P., Masson V., Pinty J.P., Redelsperger J.L., Richard E., and Vilà- Guerau de Arellano J. (1998). ‘The Meso-Nh atmospheric simulation system Part I: adiabatic formulation and control simulation’. Ann. Geophys. 16:90–109CrossRefGoogle Scholar
  33. Lin C.L., McWilliams J.C., Moeng C.H., and Sullivan P.P. (1996). ‘Coherent Structures in a Neutrally-Stratified Planetary Boundary Layer’. Phys. Fluids 8:2626–2639CrossRefGoogle Scholar
  34. Lin C.L., Sullivan P.P., Moeng C.H., and McWilliams J.C. (1997). ‘The Effect of Surface Roughness on Flow Structures in a Neutrally-Stratified Planetary Boundary Layer’. Phys. Fluids 9:3235–3249CrossRefGoogle Scholar
  35. Mahrt L. and Gibson W. (1992). ‘Flux Decomposition into Coherent Structures’. Boundary-Layer Meteorol. 60:143–168CrossRefGoogle Scholar
  36. Moeng C.H. and Sullivan P.P. (1994). ‘A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows’. J. Atmos. Sci. 51:999–1022CrossRefGoogle Scholar
  37. Mourad P.D. (1996). ‘Inferring the Multiscale Structure of Atmospheric Turbulence using Satellite-Based SAR Imagery’. J. Geophys. Res. 101:18433–18499CrossRefGoogle Scholar
  38. Porté-Agel F., Meneveau C., and Parlange M.B. (2000). ‘A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer’. J. Fluid Mech. 415:216–284CrossRefGoogle Scholar
  39. Savtchenko A. (1999). ‘Effect of Large Eddies on Atmospheric Surface Layer Turbulence and the Underlying Wave Field’. J. Geophys. Res. 104:3149–3157CrossRefGoogle Scholar
  40. Toh S. and Itano T. (2005). ‘Interaction Between a Large-Scale Structure and Near-Wall Structures in Channel Flow’. J. Fluid. Mech. 524:249–262CrossRefGoogle Scholar
  41. Townsend A.A. (1976). The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge, 429 pp.Google Scholar
  42. Weckwerth, T. M., Grund, C. J., and Mayor, S. D.: 1997, ‘Linearly-Organized Coherent Structures in the Surface Layer’, Proceedings 12th Symp. on Boundary Layer and Turbulence, Vancouver, B.C., Canada, A.M.S., pp. 22–23.Google Scholar
  43. Wilczak J.M. and Tillman J.E. (1980). ‘The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer’. J. Atmos. Sci. 37:2424–2443CrossRefGoogle Scholar
  44. Wilson D.K. (1996). ‘Empirical Orthogonal Function Analysis of the Weakly Convective Atmospheric Boundary Layer Part I: Eddy Structures’. J. Atmos. Sci. 53:801–823CrossRefGoogle Scholar
  45. Young G.S., Kristovich D.S., Hjelmfelt M.R. and Foster R.C. (2002). ‘Rolls, Streets, Waves and More: A Review of Quasi-Two Dimensional Structures in the Atmospheric Boundary Layer’. Bull. Amer. Meteorol. Soc. 83:997–1001CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ralph C. Foster
    • 1
  • Francois Vianey
    • 1
    • 2
  • Philippe Drobinski
    • 2
  • Pierre Carlotti
    • 3
  1. 1.Applied Physics LaboratoryUniversity of WashingtonSeattleU.S.A
  2. 2.Institut Pierre Simon Laplace/Service d’AéronomieUniversité Pierre et Marie CurieParisFrance
  3. 3.Centre d’Études des TunnelsBronFrance

Personalised recommendations