Advertisement

Boundary-Layer Meteorology

, Volume 121, Issue 1, pp 33–65 | Cite as

Area-Averaged Surface Fluxes Over the Litfass Region Based on Eddy-Covariance Measurements

  • Frank Beyrich
  • Jens-Peter Leps
  • Matthias Mauder
  • Jens Bange
  • Thomas Foken
  • Sven Huneke
  • Horst Lohse
  • Andreas Lüdi
  • Wouter M. L. Meijninger
  • Dmitrii Mironov
  • Ulrich Weisensee
  • Peter Zittel
Article

Abstract

Micrometeorological measurements (including eddy-covariance measurements of the surface fluxes of sensible and latent heat) were performed during the LITFASS-2003 experiment at 13 field sites over different types of land use (forest, lake, grassland, various agricultural crops) in a 20 × 20 km2 area around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service (Deutscher Wetterdienst, DWD). Significant differences in the energy fluxes could be found between the major land surface types (forest, farmland, water), but also between the different agricultural crops (cereals, rape, maize). Flux ratios between the different surfaces changed during the course of the experiment as a result of increased water temperature of the lake, changing soil moisture, and of the vegetation development at the farmland sites. The measurements over grass performed at the boundary-layer field site Falkenberg of the MOL were shown to be quite representative for the farmland part of the area. Measurements from the 13 sites were composed into a time series of the area-averaged surface flux by taking into account the data quality of the single flux values from the different sites and the relative occurrence of each surface type in the area. Such composite fluxes could be determined for about 80% of the whole measurement time during the LITFASS-2003 experiment. Comparison of these aggregated surface fluxes with area-averaged fluxes from long-range scintillometer measurements and from airborne measurements showed good agreement.

Keywords

Eddy covariance Flux aggregation Heterogeneous land surface LITFASS-2003 Scintillometer. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André J.-C., and 30 co-authors: (1988), ‘Evaporation Over Land-surfaces: First Results from HAPEX-MOBILHY Special Observing Period’, Ann. Geophys. 6, 477–492Google Scholar
  2. André J.-C., Bougeault P., Goutorbe J.-P. (1990), ‘Regional Estimates of Heat and Evaporation Fluxes over Non-Homogeneous Terrain’. Boundary-Layer Meteorol. 50, 77–108CrossRefGoogle Scholar
  3. Arya S.P. (2001), Introduction to Micrometeorology (2nd Ed). Academic Press, San Diego London, pp. 420Google Scholar
  4. Avissar R. (1991), ‘A Statistical-Dynamical Approach to Parameterise Subgrid-Scale Land-Surface Heterogeneity in Climate Models’. Sur. Geophys. 12, 155–178Google Scholar
  5. Bange J., Roth R. (1999), ‘Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer Over Land – A Case Study’. Boundary-Layer Meteorol. 92, 295–325CrossRefGoogle Scholar
  6. Bange J., Beyrich F., Engelbart D.A.M. (2002), ‘Airborne Measurements of Turbulent Fluxes During LITFASS-98: A Case Study about Method and Significance’. Theor. Appl. Climatol. 73, 35–51CrossRefGoogle Scholar
  7. Bange J., Zittel P., Spieß, T., Uhlenbrock J., and Beyrich F.: (2006)a, ‘A New Method for the Determination of Area-Averaged Turbulent Surface Fluxes from Low-Level Flights Using Inverse Models’, Boundary-Layer Meteorol. 119, DOI: 10.(1007)/s10546-005-9040-6Google Scholar
  8. Bange J., Herold M., Spieß, T., Beyrich F., and Hennemuth B.: 2006b, ‘Turbulent Fluxes from Helipod Flights above the Heterogeneous LITFASS Area’, Boundary-Layer Meteorol. this issue.Google Scholar
  9. Barr A.G., Betts A.K., Desjardins R.L., MacPherson J.I. (1997), ‘Comparison of Regional Surface Fluxes from Boundary-Layer Budgets and Aircraft Measurements above Boreal Forest’. J. Geophys. Res. 102, 29, 213–29, 218Google Scholar
  10. Berger F. (2001), ‘Bestimmung des Energiehaushaltes am Erdboden mit Hilfe von Satellitendaten’. Tharandter Klimaprotokolle 5, 206Google Scholar
  11. Beyrich F. and Mengelkamp H.-Th.: (2006) ‘Evaporation over a Heterogeneous Land Surface: EVA_GRIPS and the LITFASS-2003 Experiment – An Overview’, Boundary-Layer Meteorol this issue.Google Scholar
  12. Beyrich F., Richter S.H., Weisensee U., Kohsiek W., Lohse H., De Bruin H.A. R., Foken, Th., Göckede M., Berger F., Vogt R., and Batchvarova E.: (2002), ‘Experimental Determination of Turbulent Fluxes Over the Heterogeneous LITFASS Area: Selected Results from the LITFASS-98 Experiment’, Theor. Appl. Climatol. 73, 19–34.Google Scholar
  13. Chen F., Yates D.N., Nagai H., LeMone M.A., Ikeda K. (2003), ‘Land Surface in the Cooperative Atmosphere Surface Exchange Study (CASES-97) Part I: Comparing Modelled Surface Flux Maps with Surface-Flux Tower and Aircraft Measurements’. J. Hydrometeorol. 4, 196–218CrossRefGoogle Scholar
  14. Cleugh H.A., Raupach M.R., Briggs P.R., Coppin P.A. (2004), ‘Regional-Scale Heat and Water Vapour Fluxes in an Agricultural Landscape: An Evaluation of CBL Budget Methods at OASIS’. Boundary-Layer Meteorol. 110, 99–137CrossRefGoogle Scholar
  15. De Bruin H.A.R., van den Hurk B.J.J.M., Kohsiek W. (1995), ‘The Scintillation Method Tested Over a Dry Vineyard Area’. Boundary-Layer Meteorol. 76, 25–40CrossRefGoogle Scholar
  16. Desjardins R.L., McPherson J.I., Mahrt L., Schuepp P.H., Pattey E., Neumann H., Baldocchi D., Wofsy S., Fitzjarrald D.R., McCaughey H., Joiner D.W. (1997) ‘Scaling up Flux Measurements for the Boreal Forest Using Aircraft – Tower Combinations’. J. Geophys. Res. 102, 29125–29133CrossRefGoogle Scholar
  17. Doran J.C., and 24 co-authors: 1992, ‘The Boardman Regional Flux Experiment’, Bull. Amer. Meteorol. Soc. 73, 1785–1795Google Scholar
  18. Engelbart D.A.M., Bange J. (2002), ‘Determination of Boundary-Layer Parameters Using Wind Profiler/RASS and Sodar/RASS in the Frame of the LITFASS Project’. Theor. Appl. Climatol. 73, 53–65CrossRefGoogle Scholar
  19. Foken Th., Göckede M., Mauder M., Mahrt L., Amiro B.D., Munger J.W. (2004), ‘Post-field Data Quality Control’. In: Lee X., MassmannW.J., Law B.E. (eds), Handbook of Micrometeorology. A Guide for Surface Flux Measurements. Kluwer Acad Publ., Dordrecht, pp. 181–208Google Scholar
  20. Frech M., Jochum A. (1999), ‘The Evaluation of Flux Aggregation Methods Using Measurements in the Surface Layer’. Agric. For. Meteorol. 98–99: 121–143CrossRefGoogle Scholar
  21. Gioli B., Miglietta F., De Martino B., Hutjes R.W.A., Dolman H.A.J., Lindroth A., Schumacher M., José Sanz M., Manca G., Peressotti A., Dumas E.J. (2004), ‘Comparison Between Tower and Aircraft-based Eddy Covariance Fluxes in Five Regions’. Agric. For. Meteorol. 127, 1–16CrossRefGoogle Scholar
  22. Giorgi F., Avissar R. (1997), ‘Representation of Heterogeneity Effects in Earth System Modelling: Experience from Land Surface Modelling’. Rev. Geophys. 35, 413–438CrossRefGoogle Scholar
  23. Gottschalk L., Batchvarova E., Gryning S.-E., Lindroth A., Melas D., Motovilov Y., Frech M., Heikinheimo M., Samuelsson P., Grelle A., Persson T. (1999), ‘Scale Aggregation Comparison of Flux Estimates from NOPEX’. Agric. For. Meteorol. 98–99, 103–119CrossRefGoogle Scholar
  24. Green A.E., Astill M.S., McAneney K.J., Nieveen J.P. (2001), ‘Path-Averaged Surface Fluxes Determined from Infrared and Microwave Scintillometers’. Agric. For. Meteorol. 109, 233–247CrossRefGoogle Scholar
  25. Gryning S.-E., Batchvarova E. (1999), ‘Regional Heat Flux Over the NOPEX Area Estimated from the Evolution of the Mixed-Layer’. Agric. For. Meteorol. 98–99: 159–167CrossRefGoogle Scholar
  26. Halldin S., Gryning S.E., Gottschalk L., Jochum A., Lundin L.-C., van de Griend A.A. (1999), ‘Energy, Water and Carbon Exchange in a Boreal Forest Landscape – NOPEX Experiences’. Agric. For. Meteorol. 98–99: 5–29CrossRefGoogle Scholar
  27. Heinemann G., Kerschgens M. (2005), ‘Comparison of Methods for Area-Averaging Surface Energy Fluxes Over Heterogeneous Land Surfaces Using High-Resolution Non-Hydrostatic Simulations’. Int. J. Climatol. 25, 379–403CrossRefGoogle Scholar
  28. Hennemuth B., Bange J., Beyrich F., Bösenberg J., Leps J.-P., Linné, H., and Zittel P.: (2006), ‘Measurements of Water Vapour Transport in the Atmospheric Boundary Layer Over Heterogeneous Terrain’, Boundary-Layer Meteorol. this issue.Google Scholar
  29. Kaimal J.C., Finnigan J.J. (1994), Atmospheric Boundary Layer Flows – Their Structure and Measurement. Oxford University Press, New York, 289 pp.Google Scholar
  30. Kite G., Droogers P. (2000), ‘Comparing Evapotranspiration Estimates from Satellite, Hydrological Models, and Field Data’. J. Hydrol. 229, 3–18CrossRefGoogle Scholar
  31. LeMone M.A., Grossmann R.L., Coulter R.L., Wesely M.L., Klazura G.E., Poulos G.S., Blumen W., Lundquist J.K., Cuenca R.H., Kelly S.F., Brandes E.A., Oncley S.P., McMillan R.T., Hicks B.B. (2000), ‘Land – Atmosphere Interaction Research, Early Results and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE’. Bull. Amer. Meteorol. Soc. 81, 757–779CrossRefGoogle Scholar
  32. Mahrt L. (1996), ‘The Bulk Aerodynamic Formulation Over Heterogeneous Surfaces’. Boundary-Layer Meteorol. 78, 87–119CrossRefGoogle Scholar
  33. Mahrt L., Ek M. (1993), ‘Spatial Variability of Turbulent Fluxes and Roughness Lengths in HAPEX-MOBILHY’. Boundary-Layer Meteorol. 65, 381–400Google Scholar
  34. Mahrt L., Vickers D., Sun J., McCaughey J.H. (2001), ‘Calculation of Area-Averaged Fluxes: Application to BOREAS’. J. Appl. Meteorol. 40, 915–920CrossRefGoogle Scholar
  35. Mauder M., Liebethal C., Göckede M., Leps J.-P., Beyrich F., and Foken T.: (2006), ‘Processing and Quality Control of Flux Data During LITFASS-2003’, Boundary-Layer Meteorol. this issue.Google Scholar
  36. Meijninger W.M.L., Hartogensis O.K., Kohsiek W., Hoedjes J.C.B., Zuurbier R.M., De Bruin H.A.R. (2002a), ‘Determination of Area-Averaged Sensible Heat Flux with a Large-Aperture Scintillometer Over a Heterogeneous Surface – Flevoland Field Experiment’. Boundary-Layer Meteorol. 105, 37–62CrossRefGoogle Scholar
  37. Meijninger W.M.L., Green A.E., Hartogensis O.K., Kohsiek W., Hoedjes J.C.B., Zuurbier R.M., De Bruin H.A.R. (2002b), ‘Determination of Area-Averaged Water Vapour Fluxes with Large-Aperture and Radio-Wave Scintillometers over a Heterogeneous Surface – Flevoland Field Experiment’. Boundary-Layer Meteorol. 105, 63–83CrossRefGoogle Scholar
  38. Meijninger W.M. L., Beyrich F., Lüdi A., Kohsiek W., and De Bruin H.A. R.: (2006), ‘Scintillometer-Based Turbulent Fluxes of Sensible and Latent Heat Over a Heterogeneous Land Surface – A Contribution to LITFASS-2003’, Boundary-Layer Meteorol. this issue.Google Scholar
  39. Mironov D., Terzhevik A., Beyrich F., Heise E., and Lohse H.: (2003), ‘A Two-Layer Lake Model for Use in Numerical Weather Prediction’, Proceedings Baltic HIRLAM Workshop, 17–20 November 2003, St. Petersburg, Russia, pp. 83–85. (see also: http://nwpi.krc. karelia.ru/flake/index.htm)Google Scholar
  40. Mölders N. (2001), ‘On the Uncertainty in Mesoscale Modelling Caused by Surface’. Meteorol. Atmos. Phys. 76, 119–141CrossRefGoogle Scholar
  41. Sellers P.J. and 20 co-authors: (1997), ‘BOREAS in 1997: Experiment Overview, Scientific Results, and Future Directions’, J. Geophys. Res. 102, 28731–28769Google Scholar
  42. Soegaard H. (1999), ‘Fluxes of Carbon dioxide, Water Vapour and Sensible Heat in a Boreal Agricultural Area of Sweden – Scaled from Canopy to Landscape Level’. Agric. For. Meteorol. 98–99: 463–478CrossRefGoogle Scholar
  43. Tsvang L.R., Fedorov M.M., Kader B.A., Zubkovskii S.L., Foken T., Richter S.H., Zelený J. (1991), ‘Turbulent Exchange Over a Surface with Chessboard-Type Inhomogeneities’. Boundary-Layer Meteorol. 55, 141–160CrossRefGoogle Scholar
  44. Van den Hurk B.J.J.M. (2001), ‘Energy Balance Based Surface Flux Estimation from Data, and Its Application for Surface Moisture Assimilation’. Meteorol. Atmos. Phys. 76, 43–52CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Frank Beyrich
    • 1
  • Jens-Peter Leps
    • 1
  • Matthias Mauder
    • 2
  • Jens Bange
    • 3
  • Thomas Foken
    • 2
  • Sven Huneke
    • 4
  • Horst Lohse
    • 4
  • Andreas Lüdi
    • 5
  • Wouter M. L. Meijninger
    • 6
  • Dmitrii Mironov
    • 7
  • Ulrich Weisensee
    • 1
  • Peter Zittel
    • 3
  1. 1.German Meteorological Service (DWD)Meteorological Observatory LindenbergTauche-OT LindenbergGermany
  2. 2.Department on MicrometeorologyUniversity of BayreuthBayreuthGermany
  3. 3.Institute for Aerospace SystemsTechnical University of BraunschweigBraunschweigGermany
  4. 4.Institute for Coastal ResearchGKSS Research Centre GeesthachtGeesthachtGermany
  5. 5.Institute for Applied PhysicsUniversity of BernBernSwitzerland
  6. 6.Meteorology and Air Quality GroupWageningen University and Research CentreWageningenThe Netherlands
  7. 7.German Meteorological Service (DWD)OffenbachGermany

Personalised recommendations