Boundary-Layer Meteorology

, Volume 120, Issue 2, pp 315–351 | Cite as

Urban Thermodynamic Island in a Coastal City Analysed from an Optimized Surface Network

  • Grégoire Pigeon
  • Aude Lemonsu
  • Nathalie Long
  • Joël Barrié
  • Valéry Masson
  • Pierre Durand


Within the framework of ESCOMPTE, a French experiment performed in June and July 2001 in the south-east of France to study the photo-oxidant pollution at the regional scale, the urban boundary layer (UBL) program focused on the study of the urban atmosphere over the coastal city of Marseille. A methodology developed to optimize a network of 20 stations measuring air temperature and moisture over the city is presented. It is based on the analysis of a numerical simulation, performed with the non-hydrostatic, mesoscale Meso-NH model, run with four nested-grids down to a horizontal resolution of 250 m over the city and including a specific parametrization for the urban surface energy balance. A three-day period was modelled and evaluated against data collected during the preparatory phase for the project in summer 2000. The simulated thermodynamic surface fields were analysed using an empirical orthogonal function (EOF) decomposition in order to determine the optimal network configuration designed to capture the dominant characteristics of the fields. It is the first attempt of application of this kind of methodology to the field of urban meteorology. The network, of 20 temperature and moisture sensors, was implemented during the UBL-ESCOMPTE experiment and continuously recorded data from 12 June to 14 July 2001. The measurements were analysed in order to assess the urban thermodynamic island spatio-temporal structure, also using EOF decomposition. During nighttime, the influence of urbanization on temperature is clear the field is characterized by concentric thermo-pleths around the old core of the city, which is the warmest area of the domain. The moisture field is more influenced by proximity to the sea and airflow patterns. During the day, the sea breeze often moves from west or south-west and consequently the spatial pattern for both parameters is characterized by a gradient perpendicular to the shoreline. Finally, in order to assess the methodology adopted, the spatial structures extracted from the simulation of the 2000 preparatory campaign and observations gathered in 2001 have been compared. They are highly correlated, which is a relevant validation of the methodology proposed. The relations between these spatial structures and geographical characteristics of the site have also been studied. High correlations between temperature spatial structure during nighttime and urban cover fraction or street aspect ratio are observed and simulated. For temperature during daytime or moisture during both daytime and nighttime these geographical factors are not correlated with thermodynamic fields spatial structures.


Coastal city EOF Surface network UBL-ESCOMPTE Urban heat isand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnfield A.J. (2003). ‘Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island’. Int. J. Climatol. 23:1–26CrossRefGoogle Scholar
  2. Bärring L. and Mattson J.O. (1985). ‘Canyon Geometry, Street Temperatures and Urban Heat Island in Malmö, Sweden’. J. Climatol. 5:433–444CrossRefGoogle Scholar
  3. Bénech, B., Cachier, H., Cros, B., Durand, P., Gizard, E., Hanuise, C., Jambert, C., Lefebvre, M. P., Leopold, A., Lopez, A., Masclet, P., Penazzi, G., Robin, D., Saïd, F., Serça, D., Sol, B., and Zephoris, M.: 2001, ‘Report of ESCOMPTE preparatory field campaign – 19 June–9 July 2000’. Technical report, Laboratoire d’Aérologie, 14 avenue Edouard Belin 31400 Toulouse, FRANCE. In French, 152 pp., available on request from the authors.Google Scholar
  4. Bougeault P. and Lacarrère P. (1989). ‘Parametrization of Orography-induced Turbulence in a Meso-beta-scale Model’. Mon. Wea. Rev. 117:1872–1890CrossRefGoogle Scholar
  5. CEC: 2000, ‘CORINE Land Cover. Technical guide, Addendum’, Technical Report 40, European Environment Agency.Google Scholar
  6. Cros B., Durand P., Cachier H., Drobinski P., Fréjafon E., Kottmeïer C., Perros P.E., Peuch V.H., Ponche J.L., Robin D., Saïd F., Toupance G., and Wortham H. (2004). ‘The ESCOMPTE Program: An Overview’. Atmos Res. 69:241–279CrossRefGoogle Scholar
  7. Cuxart J., Bougeault P., and Redelsperger J.L. (2000). ‘A Turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126:1–30CrossRefGoogle Scholar
  8. Deardorff J.W. (1970). ‘A Three-dimensional Numerical Study Investigation of the Idealized Planetary Boundary Layer’. Geoph. Fluid Dyn. 27:377–410CrossRefGoogle Scholar
  9. Dupont S., Otte T.L., and Ching J.K.S. (2004). ‘Simulation of Meteorological fields within and above Urban and Rural Canopies with a Mesoscale Model’. Boundary Layer Meteorol. 113(1):111–158CrossRefGoogle Scholar
  10. Eliasson I. (1996). ‘Urban Nocturnal Temperatures, Street Geometry and Land Use’. Atmos. Environ. 30:379–392CrossRefGoogle Scholar
  11. Eliasson I. and Svensson M.K. (2003). ‘Spatial Air Temperature Variations and Urban Land Use – a Statistical Approach’. Meteorol. Appl. 10:135–149CrossRefGoogle Scholar
  12. Goh K.C. and Chang C.H. (1999). ‘The Relationship between Height to Width Ratios and the Heat Island Intensity at 22:00 h for Singapore’. Int. J. Climatol. 19:1011–1023CrossRefGoogle Scholar
  13. Hage K.D. (1975). ‘Urban–Rural Humidity Differences’. J. Appl. Meteorol. 14:1277–1283CrossRefGoogle Scholar
  14. Holmer B. and Eliasson I. (1999). ‘Urban–Rural Vapour Pressure Differences and their Role in the Development of Urban Heat Islands’. Int. J. Climatol. 19:989–1009CrossRefGoogle Scholar
  15. Kessler E. (1969). ‘On the Distribution and Continuity of Water Substance in Atmospheric Circulation’. Meteorol. Monog. 10:1–84Google Scholar
  16. Lafore J.P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Héreil P., Mascart P., Masson V., Pinty J. P., Redelsperger J.L., Richard E. and de Arellano J.V.-G. (1998). ‘The Méso-NH Atmospheric Simulation System Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16:90–109CrossRefGoogle Scholar
  17. Lemonsu A. and Masson V. (2002). ‘Simulation of a Summer Urban Breeze over Paris’. Boundary-Layer Meteorol. 104: 463–490CrossRefGoogle Scholar
  18. Lemonsu A., Grimmond C.S.B. and Masson V. (2004). ‘Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille’. J. Appl. Meteorol. 43:312–327CrossRefGoogle Scholar
  19. Lemonsu A., Pigeon G., Masson V. and Moppert C. (2005). ‘Sea–town Interactions over Marseille: 3D Urban Boundary Layer and Thermodynamic Fields near the Surface’. Theor. Appl. Climatol. 74(2):1–12Google Scholar
  20. Lemonsu, A., Bastin, S., Masson, V. and Drobinski, P.: 2006, ‘Vertical Structure of the Urban Boundary Layer over Marseille under Sea breeze Conditions’, Boundary-Layer Meteorol., 118, xx-xx.Google Scholar
  21. Long N. (2003). ‘Analyses Morphologiques et Aérodynamiques du tissu urbain: application à la micro-climatologie de Marseille pendant la campagne ESCOMPTE’. Ph.D. Thesis (in French), Université des Sciences et Techniques de Lille, FranceGoogle Scholar
  22. Long, N. and Kergomard, C.: 2005, ‘Classification Morphologique du tissu urbain pour des applications climatologiques’, Revue Internationale de Géomatique, in press.Google Scholar
  23. Long N., Mestayer P. and Kergomard C. (2002). ‘Development of a Software to Describe the City Morphology and to Compute Aerodynamic Parameters from an Urban Data Base’. in Fourth Symp. on the Urban Environment, Norfolk, VA, American Meteorological Society, Boston, MA, pp. 31–32.Google Scholar
  24. Martilli A., Clappier A. and Rotach M.W. (2002). ‘An Urban Surface Exchange Parameterisation for Mesoscale Models’. Boundary Layer Meteorol. 104(2):261–304CrossRefGoogle Scholar
  25. Masson V. (2000). ‘A Physically-based Scheme for the Urban Energy Budget in Atmospheric models’. Boundary-Layer Meteorol. 94:357–397CrossRefGoogle Scholar
  26. Masson V., Champeaux J.L., Chauvin F., Meriguet C. and Lacaze R. (2003). ‘A Global Data Base of Land Surface Parameters at 1 km Resolution in Meteorological and Climate Models’. J. Climate 16:1261–1282Google Scholar
  27. Masson V., Grimmond C.S.B. and Oke T.R. (2002). ‘Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities’. J. Appl. Meteorol. 41:1011–1026Google Scholar
  28. Mestayer P.G., Durand P., Augustin P., Bastin S., Bonnefond J.M., Bénech B., Campistron B., Coppalle A., Delbarre H., Dousset B., Drobinski P., Druilhet A., Fréjafon E., Grimmond C.S.B., Groleau D., Irvine M., Kergomard C., Kermadi S., Lagouarde J.P., Lemonsu A., Lohou F., Long N., Masson V., Moppert C., Noilhan J., Offerle B., Oke T.R., Pigeon G., Puygrenier V., Roberts S., Rosant J.M., Saïd F., Salmond J., Talbaut M., and Voogt J. (2005). ‘The Urban Boundary-Layer Field Campaign in Marseille (UBL/CLU-Escompte): Set-Up and First Results’. Boundary-Layer Meteorol. 114: 315–365CrossRefGoogle Scholar
  29. Morcrette J.J. (1991). ‘Radiation and Cloud Radiative Properties in the European Center for Medium Range Weather Forecasts Forecasting System’. J. Geophys. Res. 96: 9121–9132CrossRefGoogle Scholar
  30. Morris C.J.G., Simmonds I., and Plummer N. (2001). ‘Quantification of the Influences of Wind and Cloud on the Nocturnal Urban Heat Island of a Large City’. J Appl Meteorol 40:169–182CrossRefGoogle Scholar
  31. Nakamura Y. and Oke T.R. (1988). ‘Wind, Temperature and Stability Conditions in an East–west Oriented Urban Canyon’. Atmos. Environ. 22:2691–2700CrossRefGoogle Scholar
  32. Noilhan J. and Mahfouf J.F. (1996). ‘The ISBA Land Surface Parameterisation Scheme’. Global Planetary Change 13:145–159CrossRefGoogle Scholar
  33. Noilhan J. and Planton S. (1989). ‘A Simple Parameterization of Land Surface Processes for Meteorological Models’. Mon. Wea. Rev. 117:536–549CrossRefGoogle Scholar
  34. Nuñez M., Eliasson I., and Lindgren J. (2000). ‘Spatial Variations of Incomming Longwave Radiation in Göteborg, Sweden’. Theor. Appl. Climatol. 67:181–192CrossRefGoogle Scholar
  35. Oke T.R. (1981). ‘Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations’. Int. J. Climatol. 1:237–254CrossRefGoogle Scholar
  36. Oke T.R. (1987). Boundary Layer Climates. Methuen, London and New York, pp. 435Google Scholar
  37. Oke T.R. (2004). ‘Urban Observations’, IOM report, World Meteorological Organization, Geneva. 49 pp.Google Scholar
  38. Park H.S. (1986). ‘Features of the Heat Island in Seoul and its Surrounding Cities’. Atmos. Environ. 20:1859–1866CrossRefGoogle Scholar
  39. Sundborg A. (1950). ‘Local Climatological Studies of the Temperature Conditions in an Urban Area’. Tellus 2(3):221–231CrossRefGoogle Scholar
  40. Unger J., Sümeghy Z., Gulyás Á., Bottyán Z. and Mucsi L. (2001). ‘Land-use and Meteorological Aspects of the Urban Heat Island’. Meteorol. Appl. 8:189–194CrossRefGoogle Scholar
  41. Vihma C. and Kottmeier C. (2000). ‘A Modelling Approach for Optimizing Flight Patterns in Airbone Meteorological Measurements’. Boundary-Layer Meteorol. 95:211–230CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Grégoire Pigeon
    • 1
  • Aude Lemonsu
    • 1
  • Nathalie Long
    • 2
  • Joël Barrié
    • 1
  • Valéry Masson
    • 1
  • Pierre Durand
    • 3
  1. 1.Centre National de Recherches MétéorologiquesMétéo-France/CNRS-GAMEToulouse CedexFrance
  2. 2.GREYC – CNRS UMR 6072CaenFrance
  3. 3.Laboratoire d’AérologieUMR CNRS-UPS 5560ToulouseFrance

Personalised recommendations