Boundary-Layer Meteorology

, Volume 119, Issue 3, pp 563–587 | Cite as

Analysis of Low-Frequency Turbulence Above Tall Vegetation Using a Doppler Sodar

  • Christoph Thomas
  • Jens-Christopher Mayer
  • Franz X. Meixner
  • Thomas Foken
Article

Abstract

This study applies acoustic sounding to observe coherent structures in the roughness sublayer (RSL) above tall vegetated surfaces. Data were collected on 22 days during two separate field experiments in summer 2003. A quality control scheme was developed to ensure high data quality of the collected time series. The data analysis was done using both discrete and continuous wavelet transform. The flow in the RSL was found to be a superposition of dynamic Kelvin–Helmholtz instabilities and convective mixing. The characteristic time scales for coherent structures resulting from the dynamic instabilities were observed to be approximately 20–30 s while thermal eddies have much larger time scales of 190–210 s. The degree of vertical coherency in the RSL increases with the flow evolving from neutral to near-convective conditions. This increase in the degree of organisation is attributed to the evolution of attached thermal eddies. The coherent structures resulting from instabilities were found to be present throughout the RSL but do not contribute to the increased vertical coherency. An alternative conceptual approach for the definition of the RSL is proposed, which yields its maximum vertical extent to five times the canopy height.

Keywords

Acoustic sounding Coherent structures Turbulence Vegetation Wavelet transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akima, H.: 1970, ‘A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures’, J. Assc. Comp. Mach. 17, 589–602.Google Scholar
  2. Aubrun S., Koppmann R., Leitl B., Moellmann-Coers M., Schaub A. (2005). ‘Physical Modelling of an Inhomogeneous Finite Forest Area in a Wind Tunnel - Comparison with Field Data and Lagrangian Dispersion Calculations’. Agric. For. Meteorol. 129, 121–135CrossRefGoogle Scholar
  3. Bergström H., Högström U. (1989). ‘Turbulent Exchange above a Pine Forest. II. Organized Structures’. Boundary-Layer Meteorol. 49, 231–263CrossRefGoogle Scholar
  4. Brunet Y., Irvine M. (2000). ‘The Control of Coherent Eddies in Vegetation Canopies: Streamwise Structure Spacing, Canopy Shear Scale and Atmospheric Stability’. Boundary-Layer Meteorol. 94, 139–163CrossRefGoogle Scholar
  5. Chen J., Hu F. (2003). ‘Coherent Structures Detected in Atmospheric Boundary-Layer Turbulence Using Wavelet transforms at Huaihe River Basin, China’. Boundary-Layer Meteorol. 107, 429–444CrossRefGoogle Scholar
  6. Collineau S., Brunet Y. (1993a). ‘Detection of Turbulent Coherent Motions in a Forest Canopy. Part I: Wavelet Analysis’. Boundary-Layer Meteorol. 65, 357–379Google Scholar
  7. Collineau S., Brunet Y. (1993b). ‘Detection of Turbulent Coherent Motions in a Forest Canopy Part II: Time-Scales and Conditional Averages’. Boundary-Layer Meteorol. 66, 49–73CrossRefGoogle Scholar
  8. Coulter R., Wesely M. (1980). ‘Estimates of Surface Heat Flux from Sodar and Laser Scintillation Measurements in the Unstable Boundary Layer’. J. Appl. Meteorol. 19, 1209–1222CrossRefGoogle Scholar
  9. Crescenti G. (1998). ‘The Degradation of Doppler Sodar Performance Due to Noise: A Review’. Atmos. Environ. 32, 1499–1509CrossRefGoogle Scholar
  10. Donoho D.L., Johnstone I.M. (1994). ‘Ideal Spatial Adaptation by Wavelet Shrinkage’. Biometrika 81, 425–455CrossRefGoogle Scholar
  11. Finnigan J. (2000). ‘Turbulence in Plant Canopies’. Ann. Rev. Fluid Mech. 32, 519–571CrossRefGoogle Scholar
  12. Foken T., Göckede M., Mauder M., Mahrt L., Amiro B., Munger J. (2004). ‘Post-field Data Quality Control’. In: Lee X., Massman W.J., Law B. (eds). Handbook of Micrometeorology: A Guide for Surface Flux Measurements. Kluwer, Dordrecht, pp. 181–208Google Scholar
  13. Gao W., Shaw R.H., Paw U.K.T. (1989). ‘Observation of Organized Structures in Turbulent Flow within and above a Forest Canopy’. Boundary-Layer Meteorol. 47, 349–377CrossRefGoogle Scholar
  14. Gerstberger P., Foken T., Kalbitz K. (2004). ‘The Lehstenbach and Steinkreuz Catchments in NE Bavaria, Germany’. In: Matzner E.(eds). Biogeochemistry of Forested Catchments in a Changing Environment. Ecological Studies, No. 172, Vol. 172 Springer, Heidelberg, pp. 15–41Google Scholar
  15. Hall F.J., Edinger J., Neff W. (1975). ‘Convective Plumes in the Planetary Boundary Layer, Investigated with an Acoustic Echo Sounder’. J. Appl. Meteorol. 14, 513–523CrossRefGoogle Scholar
  16. Haugen D., Kaimal J.C. (1978). ‘Measuring Temperature Structure Parameters Profiles with an Acoustic Sounder’. J. Appl. Meteorol. 17, 895–899CrossRefGoogle Scholar
  17. Holschneider M. (1995). Wavelets, An Analysis Tool. Oxford University Press, New York 423 ppGoogle Scholar
  18. Katul G., Lai C.-T., Schaefer K., Vidakovic B., Albertson J., Ellsworth D., Oren R. (2001). ‘Multiscale Analysis of Vegetation Surface Fluxes: From Seconds to Years’. Adva. Water Resour. 24, 1119–1132CrossRefGoogle Scholar
  19. Katul G., Vidakovic B. (1998). ‘Identification of Low-Demensional Energy Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods’. J. Atmos. Sci. 55, 377–389CrossRefGoogle Scholar
  20. Koppmann R. (2003). ‘Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (ECHO)’. AFO-2000 Newslett. 5, 7–10Google Scholar
  21. Kumar P., Foufoula-Georgiou E. (1994). ‘Wavelet Analysis in Geophysics: An Introduction’. In: Foufoula-Georgiou E., Kumar P. (eds). Wavelets in Geophysics. Vol. 4 of Wavelet Analysis and its Applications. Academic Press, San Diego, pp. 1–43Google Scholar
  22. Little C. (1969). ‘Acoustic Methods for the Remote Probing of the Lower Atmosphere’, in IEEE, Vol. 53, pp. 571–578.Google Scholar
  23. Lu C., Fitzjarrald D. (1994). ‘Seasonal and Diurnal Variations of Coherent Structures over a Deciduous Forest’. Boundary-Layer Meteorol. 69, 43–69CrossRefGoogle Scholar
  24. Miller K., Rochwarger M. (1970). ‘On Estimates of Spectral Moments in the Presence of Colored Noise’, in IEEE Trans. Inf. Theory IT-16, pp. 303–308.Google Scholar
  25. Neff, W.: 1975, ‘Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer’, TR ERL 322-WPL 38, NOAA.Google Scholar
  26. Neff W., Coulter R. (1986). ‘Acoustic Remote Sensing’. In: Lenschow D., (eds). Probing the Atmospheric Boundary Layer. American Meteorological Society, Boston, pp. 201–239Google Scholar
  27. Novak M., Warland J., Orchansky A., Kettler R., Green S. (2000). ‘Wind Tunnel and Field Measurements of Turbulent Flow in Forests. Part I: Uniformly Thinned Stands’. Boundary-Layer Meteorol. 95, 457–495CrossRefGoogle Scholar
  28. Paw U.K.T., Brunet Y., Collineau S., Shaw R.H., Maitani T., Qiu J., Hipps L. (1992). ‘Evidence of Turbulent Coherent Structures in and above Agricultural Plant Canopies’. Agric. For. Meteorol. 61, 55–68CrossRefGoogle Scholar
  29. Petenko I., Argentini S., Bolignano A., Mastrantonio G., Viola A. (2004). ‘Time and Horizontal Scales of Convective Plumes at Mid-latitudes’. In: Anderson P., Bradley S., von Hunerbein S. (eds). 12th International Symposium on Acoustic Remote Sensing. British Antarctic Survey, Cambridge, UKGoogle Scholar
  30. Petenko I., Bezverkhnii V. (1999). ‘Temporal Scales of Convective Coherent Structures Derived from Sodar Data’. Meteorol. Atmosph. Phys. 71, 105–116CrossRefGoogle Scholar
  31. Poggi D., Porporato A., Ridolfi L., Albertson J.D., Katul G.G. (2004). ‘The Effect of Vegetation Density on Canopy Sub-layer Turbulence’. Boundary-Layer Meteorol. 111, 565–587CrossRefGoogle Scholar
  32. Raupach M.R., Finnigan J.J., Brunet Y. (1989). ‘Coherent Eddies in Vegetation Canopies’, in 4th Australasian Conference on Heat and Mass Transfer, Christchurch, New Zealand, pp. 75–90.Google Scholar
  33. Raupach M.R., Finnigan J.J., Brunet Y. (1996). ‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-layer Analogy’. Boundary-Layer Meteorol. 78, 351–382CrossRefGoogle Scholar
  34. Spizzichino A. (1974). ‘Discussion of the Operating Conditions of a Doppler Sodar’. J. Geophys. Res. 79, 5585–5591CrossRefGoogle Scholar
  35. Taconet O., Weill A. (1982). ‘Vertical Velocity Field in the Convective Bounadry layer as observed with an Acoustic Doppler Sodar’. Boundary-Layer Meteorol. 23, 133–151CrossRefGoogle Scholar
  36. Tatarskii V. (1971). The Effects of the Turbulent Atmosphere on Wave Propagation. Moscow, 1967, Israel Program for Scientific Translations, U.S. Dept. of Commerce: Nauka.Google Scholar
  37. Thomas C., Foken T. (2005). ‘Detection of Long-term Coherent Exchange over Spruce Forest Using Wavelet Analysis’. Theor. Appl. Climatol. 80, 91–104CrossRefGoogle Scholar
  38. Wesely M. (1976). ‘The Combined Effect of Temperature and Humidity Fluctuations on Refractive Index’. J. Appl. Meteorol. 15, 43–49CrossRefGoogle Scholar
  39. Wesson K.H., Katul G.G., Siqueira M. (2003). ‘Quantifying Organization of Atmospheric Turbulent Eddy Motion Using Nonlinear Time Series Analysis’. Boundary-Layer Meteorol. 106, 507–525CrossRefGoogle Scholar
  40. Williams A., Hacker J. (1993). ‘Interactions between Coherent Eddies in the Lower Convective Boundary Layer’. Boundary-Layer Meteorol. 64, 55–74CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Christoph Thomas
    • 1
  • Jens-Christopher Mayer
    • 1
  • Franz X. Meixner
    • 2
  • Thomas Foken
    • 1
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Biogeochemistry DepartmentMax-Planck-Institute for ChemistryMainzGermany

Personalised recommendations