Boundary-Layer Meteorology

, Volume 120, Issue 1, pp 181–200 | Cite as

Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter

  • Barbara HennemuthEmail author
  • Andrea Lammert


The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds


Atmospheric boundary layer height Convective boundary layer Residual layer Lidar Radiosounding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atmospheric Radiation Measurement (ARM) Program: 1999a, Nauru99 Science and Operations WWW Site., 1999Google Scholar
  2. Atmospheric Radiation Measurement (ARM) Program: 1999b, Science and Operations Plan (Draft) Nauru99. log/n99miraibnl/N99OpsPlan.pdf, 1999Google Scholar
  3. Atmospheric Radiation Measurement (ARM) Program: 2000, DIAL/Raman Lidar Validation Intercomparison Campaign., 2000Google Scholar
  4. Banta R.M., White A.B. (2003). ‘Mixing-Height Differences Between Land Use Types: Dependence on Wind Speed’. J. Geophys. Res. 108 (D10):11-1–11-10CrossRefGoogle Scholar
  5. Batchvarova E., Gryning S. (1994). ‘An Applied Model for the Height of the Daytime Mixed Layer and the Entrainment Zone’. Boundary-Layer Meteorol. 71:311–323CrossRefGoogle Scholar
  6. Beyrich F., Gryning S.-E. (1998). ‘Estimation of the Entrainment Zone Depth in a Shallow Convective Boundary Layer from Sodar Data’. J. Appl. Meteorol. 37:255–268CrossRefGoogle Scholar
  7. Beyrich F., Bange J., Berger F.H., Bernhofer C., Foken T., Hennemuth B., Leps J.-P., Lüdi A., Meijninger W.M.L., Mengelkamp H.-T. (2004). ‘Energy and Water Vapour Fluxes Over a Heterogeneous Land Surface: The LITFASS-2003 Experiment. Proceedings of 16th Symposium on Boundary Layers and Turbulence:Portland (ME), USA, Amer. Meteorol. SocGoogle Scholar
  8. Bösenberg J. (1998). ‘Ground-based Differential Absorption Lidar for Water-vapor and Temperature Profiling: Methodology’. Appl. Optics 37:3845–3860CrossRefGoogle Scholar
  9. Cleugh H.A., Grimmond C.S.B. (2001). ‘Modelling Regional Scale Surface Energy Exchanges and CBL Growth in a Heterogeneous, Urban–Rural Landscape’. Boundary-Layer Meteorol. 98:1–31CrossRefGoogle Scholar
  10. Cohn S., Angevine W. (1999). ‘Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars’. J. Appl. Meteorol. 39:1233–1247CrossRefGoogle Scholar
  11. Davis K., Gamage N., Hagelberg C., Kiemle C., Lenschow D., Sullivan P. (1999). ‘An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic. Tech. 17:1455–1468CrossRefGoogle Scholar
  12. Ertel K. (2004). Application and Development of Water Vapor DIAL Systems. Dissertation, Universität Hamburg, Scholar
  13. Flamant C., Pelon J., Flamant P., Durand P. (1997). ‘Lidar Detection of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 83:247–284CrossRefGoogle Scholar
  14. Flamant C., Georgelin M., Menut L., Pelon J., Bougelault P. (2001). ‘The Atmospheric Boundary Layer Structure Within a Cold Air Outbreak: Comparison of In Situ, Lidar and Satellite Measurements with Three-Dimensional Simulations’. Boundary-Layer Meteorol. 99:85–103CrossRefGoogle Scholar
  15. Garratt, J. R.: 1992. The Atmospheric Boundary Layer. Cambridge University Press, 316 ppGoogle Scholar
  16. Joffre S.M., Kangas M., Heikinheimo M., Kitaigorodskii S.A. (2001). ‘Variability of the Stable and Unstable Atmospheric Boundary-Layer Height and Its Scales Over a Boreal Forest’. Boundary-Layer Meteorol. 99:429–450CrossRefGoogle Scholar
  17. Johansson C., Hennemuth B., Bösenberg J., Linné H., Smedman A.-S. (2005). ‘Double-Layer Structure in the Boundary Layer Over the Baltic Sea’. Boundary-Layer Meteorol. 99:389–412CrossRefGoogle Scholar
  18. Lammert A. (2004). Untersuchung der turbulenten Grenzschicht mit Laserfernerkundung. Dissertation, Universität Hamburg, Scholar
  19. Lammert, A. and Bösenberg, J.: 2005, ‘Determination of the Convective Boundary Layer Height with Laser Remote Sensing’. Boundary-Layer Meteorol. In pressGoogle Scholar
  20. Revercomb H.E., Turner D.D., Tobin D.C., Knuteson R.O., Feltz W.F., Barnard J., Bösenberg J., Clough S., Cook D., Ferrare R., Goldsmith J., Gutman S., Halthore R., Lesht B., Liljegren J., Linne H., Michalsky J., Morris V., Porch W., Richardson S., Schmid B., Splitt M., Van Hove T., Westwater E., Whiteman D. (2003). ‘The ARM Program’s Water Vapor Intensive Observation Periods – Overview, Initial Accomplishments, and Future Challenges’. Bull. Amer. Meteorol. Soc. 84 (2):217–236CrossRefGoogle Scholar
  21. Seibert P., Beyrich F., Gryning S.E., Joffre S., Rasmussen A., Tercier P. (2000). ‘Review and Intercomparison of Operational Methods for the Determination of the Mixing Height’. Atmos. Environ. 34:1001–1027CrossRefGoogle Scholar
  22. Smedman A., Gryning S.-E., Bösenberg J., Tammelin B., Andersson T., Omstedt A., Bumke K. (1998). PEP in BALTEX. a pilot study of evaporation and precipitation in the Baltic Sea. In Second Study Conf. on BALTEX, pages 206–207, Rügen, GermanyGoogle Scholar
  23. Sorbjan Z. (1989). Structure of the Atmospheric Boundary Layer. Prentice Hall, NJ 317 ppGoogle Scholar
  24. Stull R.B. (1988). An Introduction to Boundary-layer Meteorology. Kluwer Acad. Publ., Dordrecht-Boston-London, 666 ppGoogle Scholar
  25. Troen I.B., Mahrt L. (1986). ‘A Simple Model of the Atmospheric Boundary Layer; Sensitivity to Surface Evaporation’. Boundary-Layer Meteorol. 37:129–148CrossRefGoogle Scholar
  26. Vogelezang D.H.P., Holtslag A.A.M. (1996). ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’. Boundary-Layer Meteorol. 81: 245–269CrossRefGoogle Scholar
  27. Wulfmeyer V., Bösenberg J. (1998). ‘Ground-Based Differential Absorption Lidar for Water-Vapor Profiling: Assessment of Accuracy, Resolution, and Meteorological Applications’. Appl. Optics 37(18):3825–3844CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Max-Planck-Institute for MeteorologyHamburgGermany

Personalised recommendations