Boundary-Layer Meteorology

, Volume 119, Issue 2, pp 239–262 | Cite as

Observations of the Daytime Boundary Layer in Deep Alpine Valleys

  • C. Chemel
  • J. -P. Chollet


Mixing depth structure and its evolution have been diagnosed from radar wind profiler data in the Chamonix and the Maurienne valleys (France) during summer 2003. The behaviour of refractive index structure parameter C n 2 peaks coupled with the vertical velocity variance σ w 2 was used to estimate the height of the mixed layer. Tethersonde vertical profiles were carried out to investigate the lower layers of the atmosphere in the range of approximately 400–500 m above ground level. The tethersonde device was especially useful to study the reversal of the valley wind system during the morning transition period. Specific features such as wind reversal and the convective mixed layer up to approximately the altitude of the surrounding mountains were documented. The wind reversal was observed to be much more sudden in the Maurienne valley than in the Chamonix valley


Air pollution Convective boundary layer Deep valleys Tethered balloon UHF radar wind profiler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angevine W.M., White A.B., Avery S.K. (1994). ‘Boundary-layer Depth and Entrainement Zone Characterization with a Boundary-Layer Profiler’. Boundary-Layer Meteorol. 68:375–385CrossRefGoogle Scholar
  2. Banta R.M., Shepson P.B., Bottenheim J.W., Anlauf K.G., Wiebe H.A., Gallant A., Biesenthal T., Olivier L.D., Zhu C.-J., McKendry I.G., Steyn D.G. (1997). ‘Nocturnal Cleansing Flows in a Tributary Valley’. Atmos. Environ. 31:2147–2162CrossRefGoogle Scholar
  3. Brulfert G., Chemel C., Chaxel E., Chollet J.-P. (2005a). ‘Modelling Photochemistry in Alpine Valleys’. Atmos. Chem. Phys. 5:2341–2355CrossRefGoogle Scholar
  4. Brulfert, G., Chollet, J.-P., Jouve, B., and Villard, H.: 2005b, ‘Atmospheric Emission Inventory of the Maurienne Valley for an Atmospheric Numerical Model’. Sci. Tot. press.Google Scholar
  5. Caughey S.J., Wyngaard J.C., Kaimal J.C. (1979). ‘Turbulence in the Evolving Stable Boundary Layer’. J. Atmos. Sci. 36:1041–1052Google Scholar
  6. Clements W.E., Archuleta J.A., Hoard D.E. (1989). ‘Mean Structure of the Nocturnal Drainage Flow in a Deep Valley’. J. Appl. Meteorol. 28:457–462CrossRefGoogle Scholar
  7. Corsmeier U., Kalthoff N., Kolle O., Kotzian M., Fiedler F. (1997). ‘Ozone Concentration Jump in the Stable Nocturnal Boundary Layer During a LLJ-event’. Atmos. Environ. 31:1977–1989CrossRefGoogle Scholar
  8. Coulter R.L. (1979). ‘A Comparison of Three Methods for Measuring Mixing-Layer Height’. J. Appl. Meteorol. 18:1495–1499CrossRefGoogle Scholar
  9. Doran J.C., Horst T.W., Whiteman C.D. (1990). ‘The Development and Structure of Nocturnal Slope Winds in a Simple Valley’. Boundary-Layer Meteorol. 52:41–68CrossRefGoogle Scholar
  10. Fairfall C.W. (1991). ‘The Humidity and Temperature Sensitivity of Clear-air Radars in the Convective Boundary Layer’. J. Appl. Meteorol. 30:1064–1074CrossRefGoogle Scholar
  11. Heffter J.L. (1980). ‘Transport Layer Depth Calculations’, in Proc. of the 2nd Joint Conference on Applications of Air Pollution Modelling:New Orleans, LA, USA, American Meteorological Society, 45 Beacon St., Boston, MA, USA, pp. 787–791.Google Scholar
  12. Helmis C.G., Asimakopoulos D.N., Deligiorgi D.G. (1990). ‘Some Observations on the Destruction of the Morning Temperature Inversions in a Large and Broad Mountain Valley’. J. Appl. Meteorol. 29:396–400CrossRefGoogle Scholar
  13. Heo B.-H., Kim K.E., Campistron B., Bénech B., Sung E.-S. (2003). ‘Use of the Doppler Spectral Width to Improve the Estimation of the Convective Boundary Layer Height From UHF Wind Profiler Observations’. J. Atmos. Ocean. Technol. 20:408–424CrossRefGoogle Scholar
  14. Jacoby-Koaly S., Campistron B., Bernard S., Bénech B., Ardhuin-Girard F., Dessens J., Dupont E., Carissimo B. (2002). ‘Turbulent Dissipation Rate in the Boundary Layer via UHF Wind Profiler Doppler Spectral Width Measurements’. Boundary-Layer Meteorol. 103:361–389CrossRefGoogle Scholar
  15. Kaimal J.C., Abshire N.L., Chadwick R.B., Decker M.T., Hooke W.H., Kropfli R.A., Neff W.D., Pasqualucci F., Hildebrand P.H. (1982). ‘Estimating the Depth of the Daytime Convective Boundary Layer’. J. Appl. Meteorol. 21:1123–1129CrossRefGoogle Scholar
  16. Marsik F.J., Fischer K.W., McDonald T.D., Samson P.J. (1995). ‘Comparison of Methods for Estimating Mixing Height Used During the 1992 Atlanta Field Intensive’. J. Appl. Meteorol. 34:1802–1814CrossRefGoogle Scholar
  17. Müller H., Whiteman C.D. (1988). ‘Breakup of a Nocturnal Temperature Inversion in the Dischma Valley During DISKUS’. J. Climate Appl. Meteorol. 27:188–194CrossRefGoogle Scholar
  18. Ottersten H. (1969). ‘Atmospheric Structure and Radar Backscattering in Clear Air’. Radio Sci. 4:1179–1193CrossRefGoogle Scholar
  19. Piringer M., Baumann K., Langer M. (1998). ‘Summertime Mixing Heights at Vienna, Austria, Estimated from Vertical Soundings and by a Numerical Model’. Boundary-Layer Meteorol. 89:24–45CrossRefGoogle Scholar
  20. Rampanelli G., Zardi D. (2004). ‘A Method to Determine the Capping Inversion of the Convective Boundary Layer’. J. Appl. Meteorol. 43:925–933CrossRefGoogle Scholar
  21. Sakiyama S.K. (1990). ‘Drainage Flow Characteristics and Inversion Breakup in Two Alberta Mountain Valleys’. J. Appl. Meteorol. 29:1015–1030CrossRefGoogle Scholar
  22. Seibert P., Beyrich F., Gryning S.E., Joffre S., Rasmussen A., Tercier P. (2000). ‘Review and Intercomparison of Operational Methods for the Determination of the Mixing Height’. Atmos. Environ. 34:1001–1027CrossRefGoogle Scholar
  23. Stewart J.Q., Whiteman C.D., Steenburgh W.J., Bian X. (2002). ‘A Climatological Study of Thermally Driven Wind Systems of the U.S. Intermountain West’. Bull. Amer. Met. Soc. 84:699–708CrossRefGoogle Scholar
  24. Stull R.B. (1991). ‘Static Stability – An Update’. Bull. Amer. Met. Soc. 72:1521–1529CrossRefGoogle Scholar
  25. Weill A., Klapisz C., Strauss B., Baudin F., Jaupart C., van Grunderbeeck P., outorbe J.-P. (1980). ‘Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar’. J. Appl. Meteorol. 19:199–205CrossRefGoogle Scholar
  26. Whiteman C.D. (1982). ‘Breakup of Temperature Inversions in Deep Mountain Valleys: Part I. Observations’. J. Appl. Meteorol. 21:270–289CrossRefGoogle Scholar
  27. Whiteman C.D. (1986). ‘Temperature Inversion Buildup in Colorado’s Eagle Valley’. Met. Atmos. Phys. 35:220–226CrossRefGoogle Scholar
  28. Whiteman C.D. (1990). ‘Observations of Thermally Developed Wind Systems in Mountainous Terrain’. In: Blumen W (eds). Atmospheric Processes over Complex Terrain: Meteorological Monographs:Vol 23, no 45. American Meteorological Society, 45 Beacon St., Boston, MA, USA, pp. 5–42, Chap. 2Google Scholar
  29. Whiteman C.D., McKee T.B. (1982). ‘Breakup of Temperature Inversions in Deep Mountain Valleys: Part II. Thermodynamic Model’. J. Appl. Meteorol. 21:290–302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Inc 2005

Authors and Affiliations

  1. 1.Laboratoire des Ecoulements Géophysiques et IndustrielsUniversité Joseph Fourier – C.N.R.S. – I.N.P. GrenobleGrenoble, Cedex 9France

Personalised recommendations