Boundary-Layer Meteorology

, Volume 119, Issue 2, pp 195–238 | Cite as

A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part I: Simple Prognostic Model

  • Ankur R. DesaiEmail author
  • Kenneth J. Davis
  • Christoph J. Senff
  • Syed Ismail
  • Edward V. Browell
  • David R. Stauffer
  • Brian P. Reen


The atmospheric boundary-layer (ABL) depth was observed by airborne lidar and balloon soundings during the Southern Great Plains 1997 field study (SGP97). This paper is Part I of a two-part case study examining the relationship of surface heterogeneity to observed ABL structure. Part I focuses on observations. During two days (12–13 July 1997) following rain, midday convective ABL depth varied by as much as 1.5 km across 400 km, even with moderate winds. Variability in ABL depth was driven primarily by the spatial variation in surface buoyancy flux as measured from short towers and aircraft within the SGP97 domain. Strong correlation was found between time-integrated buoyancy flux and airborne remotely sensed surface soil moisture for the two case-study days, but only a weak correlation was found between surface energy fluxes and vegetation greenness as measured by satellite. A simple prognostic one-dimensional ABL model was applied to test to what extent the soil moisture spatial heterogeneity explained the variation in north–south ABL depth across the SGP97 domain. The model was able to better predict mean ABL depth and variations on horizontal scales of approximately 100 km using observed soil moisture instead of constant soil moisture. Subsidence, advection, convergence/divergence and spatial variability of temperature inversion strength also contributed to ABL depth variations. In Part II, assimilation of high-resolution soil moisture into a three-dimensional mesoscale model (MM5) is discussed and shown to improve predictions of ABL structure. These results have implications for ABL models and the influence of soil moisture on mesoscale meteorology


Boundary-layer depth Convective boundary layer Lidar Soil moisture Surface buoyancy flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J. C., Norman J. M., Diak G. R., Kustas W. P., Mecikalski J. R. (1997). ‘A Two-source Time Integrated Model for Estimating Surface Fluxes using Thermal Infrared Remote Sensing’. Remote Sens. Environ 60:195–216CrossRefGoogle Scholar
  2. Avery T.E., Berlin G.L. (1992). Fundamentals of Remote Sensing and Airphoto Interpretation5th ed. Prentice-Hall,Upper Saddle River, NJ, USA, 472 pp.Google Scholar
  3. Avissar R., Pielke R.A. (1989). ‘A Parameterization of Heterogeneous Land-surface for Atmospheric Numerical Models and its Impact on Regional Meteorology’. Mon. Wea. Rev. 117:2113–2136CrossRefGoogle Scholar
  4. Avissar R., Schmidt T. (1998). ‘An Evaluation of the Scale at which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer using Large-Eddy Simulations’. J. Atmos. Sci. 55:2666–2689CrossRefGoogle Scholar
  5. Batchvarova E., Gryning S.-E. (1991). ‘Applied Model for the Growth of the Daytime Mixed Layer’. Boundary-Layer Meteorol. 65:261–274CrossRefGoogle Scholar
  6. Betts A.K. (2004). ‘Understanding Hydrometeorology using Global Models’. Bull. Am. Meteorol. Soc. 85:1673–1688CrossRefGoogle Scholar
  7. Betts A.K., Ball J.H. (1996). ‘The Land Surface–atmosphere Interaction: A Review based on Observations and Global Modelling Perspectives’. J. Geophys. Res. 101(D3):7209–7225CrossRefGoogle Scholar
  8. Bindlish R., Kustas W.P., French A.N., Diak G.R., Mecikalski J.R. (2001). ‘Influence of Near-surface Soil Moisture on Regional Scale Heat Fluxes: Model results using Microwave Remote Sensing Data from SGP97’. IEEE T. Geosci. Remote 39:1719–1728CrossRefGoogle Scholar
  9. Browell E.V. (1989). ‘Differential Absorption Lidar Sensing of Ozone’. P. IEEE 77:419–432CrossRefGoogle Scholar
  10. Browell E.V., Ismail S., Hall W.M., Moore A.S., Kooi S.A., Brackett V.G., Clayton M.B., Barrick J.D.W., Schmidlin F.J., Higdon N.S., Melfi S.H., Whiteman D. (1997). ‘LASE validation experiment’. In: Ansmann A., Neuber R., Rairoux P., Wanginger U (eds). Advances in Atmospheric Remote Sensing with Lidar. Springer-Verlag pp. 289–295Google Scholar
  11. Brunsell N.A., Gillies R.R. (2003). ‘Length Scale Analysis of Surface Energy Fluxes derived from Remote Sensing’. J. Hydrometeorol. 4:1212–1219CrossRefGoogle Scholar
  12. Brutsaert W., Hsu A.Y., Schmugge T.J. (1993). ‘Parameterization of Surface Heat Fluxes above Forest with Satellite Thermal Sensing and Boundary-layer Soundings’. J. Appl. Meteorol. 32:909–917CrossRefGoogle Scholar
  13. Carson D.J. (1973). ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’. Qqart. J. Roy. Meteorol. Soc. 99:450–467CrossRefGoogle Scholar
  14. Chehbouni A., Seen D.L., Njoku E.G., Lhomme J.P., Monteny B., Kerr Y.H. (1997). ‘Estimation of Sensible Heat Flux over Sparsely Vegetated Surfaces’. J. Hydrol. 189:855–868CrossRefGoogle Scholar
  15. Chen F., Yates D.N., Nagai H., LeMone M.A., Ikeda K., Grossman R.L. (2003). ‘Land Surface Heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part I: Comparison of Modelled Surface Flux Maps with Surface-Flux Tower and Aircraft Measurements’. J. Hydrometeorol. 4:196–218CrossRefGoogle Scholar
  16. Crow W.T., Wood E.F. (2002). ‘Impact of Soil Moisture Aggregation on Surface Energy Flux Prediction during SGP97’. Geophys. Res. Lett. 29, doi: 10.1029/ 2001GL013796Google Scholar
  17. Davis K.J., Gamage N., Hagelberg C.R., Kiemle C., Lenschow D.H., Sullivan P.P. (2000). ‘An Objective Method for Determining Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic Technol. 17:1455–1468CrossRefGoogle Scholar
  18. Deardorff J.W., Willis G.E., Lilly D.K. (1980). ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’. J. Fluid Mech. 100:41–64CrossRefGoogle Scholar
  19. Diak G.R., Mecikalski J.R., Anderson M.C., Norman J.M., Kustas W.P., Torn R.D., DeWolf R.L. (2004). ‘Estimated Land Surface Energy Budgets from Space: Review and Current Efforts at the University of Wisconsin – Madison and USDA-ARS’. Bull. Am. Meteorol. Soc. 85:65–78CrossRefGoogle Scholar
  20. Dirmeyer P.A., Zeng F.J., Ducharne A., Morrill J.C., Koster R.D. (2000). ‘The Sensitivity of Surface Fluxes to Soil Water Content in Three Land Surface Schemes’. J. Hydrometeorol. 1:121–134CrossRefGoogle Scholar
  21. Dobosy R.J., MacPherson J.I. (1999). ‘Intercomparison between Two Flux Airplanes at SGP97’, in Proceedings of the 14th Conf. on Hydrology, Dallas, TX, January 10–15, 1999, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 137–140, preprintGoogle Scholar
  22. Doran J.C., Hubbe J.M., Liljegren J.C., Shaw W.J., Collatz G.J., Cook D.R., Hart R.L. (1998). ‘A Technique for Determining the Spatial and Temporal Distributions of Surface Fluxes of Heat and Moisture over the Southern Great Plains Cloud and Radiation Testbed’. J. Geophys. Res. 103(D6):6109–6121CrossRefGoogle Scholar
  23. Findell K.L., Elfatir A.B. (2003). ‘Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part I: Framework Development’. J. Hydrometeorol. 4:552–569CrossRefGoogle Scholar
  24. French A.N, Schmugge T.J., Kustas W.P. (2000). ‘Estimating Surface Fluxes over the SGP Site with Remotely Sensed Data’. Phys. Chem. Earth Pt. B 25:167–172Google Scholar
  25. Gao W., Coulter R.L., Lesht B.M., Qiu J., Wesely M.L. (1998). ‘Estimated Clear-sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations’. J. Appl. Meteorol. 37:5–22CrossRefGoogle Scholar
  26. Garcia A.L. (2000). Numerical Methods for Physics, 2nd Ed. Prentice Hall, Upper Saddle River, NJ U.S.A 423 pp.Google Scholar
  27. Gillies R.R. Carlson T.N. (1995). ‘Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models’. J. Appl. Meteorol. 34:745–756CrossRefGoogle Scholar
  28. Gryning S.-E., Batchvarova E. (1996). ‘A Model for the Height of the Internal Boundary Layer Over an Area with an Irregular Coastline’. Boundary-Layer Meteorol. 78:405–413CrossRefGoogle Scholar
  29. Hart R.L., Cook D.R., Wesely M.L. (1998). ‘The ARM Eddy Correlation System For Monitoring Surface Fluxes’, in 10th Symposium On Meteorological Observations and Instrumentation, Phoenix, AZ, 11–16 January 1998, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 335–336, preprintGoogle Scholar
  30. Hubbe J.M., Doran J.C., Liljegren J.C., Shaw W.J. (1997) ‘Observations of Spatial Variations of Boundary Layer Structure over the Southern Great Plains Cloud and Radiation Testbed’. J. Appl. Meteorol. 36:1221–1231CrossRefGoogle Scholar
  31. Ismail S., Browell E.V., Ferrare R.A., Senff C., Davis K.J., Lenschow D.H., Kooi S.A., Brackett V.G., Clayton M.B. (1998). ‘LASE Measurements of Convective Boundary Layer Development During SGP97’, in 19th Intl. Laser Radar Conf., Annapolis, MD, 6–10 Jaul 1998, NASA, preprintGoogle Scholar
  32. Jackson T.J. (1997). Southern Great Plains 1997 (SGP97) Hydrology Experiment Plan. USDA-ARS Hydrology Laboratory, Beltsville, MD, U.S.A 178 pp.Google Scholar
  33. Jackson T.J., Le Vine D.M., Hsu A.Y., Oldak A., Starks P.J., Swift C.T., Isham J.D., Haken M. (1999). ‘Soil Moisture Mapping at Regional Scales using Microwave Radiometry: the Southern Great Plains Hydrology Experiment’. IEEE T. Geosci. Remote 37:2136–2151CrossRefGoogle Scholar
  34. Koster R.D., Dirmeyer P.A., Guo Z., Bonan G., Chan E., Cox P., Gordon C.T., Kanae S., Kowalczyk E., Lawrence D., Liu P., Lu C., Malyshev S., McAvaney B., Mitchell K., Mocko D., Oki T., Oleson K., Pitman A., Sud Y.C., Taylor C.M., Verseghy D., Vasic R., Xue Y., Yamada T. (2004). ‘Regions of Strong Coupling between Soil Moisture and Precipitation’. Science 305:1138–1140CrossRefPubMedGoogle Scholar
  35. Kustas W.P., Zhan X., Jackson T.J. (1999). ‘Mapping Surface Energy Flux Partitioning at Large Scales with Optical and Microwave Remote-Sensing Data from Washita ‘92’. Water Resour. Res. 35:265–277CrossRefGoogle Scholar
  36. LeMone M.A., Grossman R.L., Chen F., Ikeda K., Yates D. (2003). ‘Choosing the Averaging Interval for Comparison of Observed and Modelled Fluxes along Aircraft Transects over a Heterogeneous Surface’. J. Hydrometeorol. 4:179–195CrossRefGoogle Scholar
  37. Le Vine D.M., Griffis A.J., Swift C.T., Jackson T.J. (1994). ‘ESTAR: A Synthetic Aperture Microwave Radiometer for Remote Sensing Applications’. P. IEEE 82:1787–1801CrossRefGoogle Scholar
  38. MacPherson J.I. (1998). NRC Twin Otter Operations in the 1997 Southern Great Plains experiment. National Research Council-Canada Institute for Aerospace Research,Rep. LTR-FR-146 Ottawa Canada 122 pp.Google Scholar
  39. Mahrt L. (2000). ‘Surface Heterogeneity and Vertical Structure of the Boundary layer’. Boundary-Layer Meteorol. 96:33–62CrossRefGoogle Scholar
  40. Mann J., Lenschow D.H. (1994). ‘Errors in Airborne Flux Measurements’. J. Geophys. Res. 99:14,519–14,526Google Scholar
  41. Mecikalski J.R., Diak G.R., Anderson M.C., Norman J.M. (1999). ‘Estimating Fluxes on Continental Scales using Remote Sensed Data in an Atmospheric–Land Exchange Model’. J. Appl. Meteorol. 38:1352–1369CrossRefGoogle Scholar
  42. Pelgrum H., Bastiaanssen W.G.M. (1996). ‘An Intercomparison of Techniques to Determine the Area-Averaged Latent Heat Flux from Individual In Situ Observations: A Remote Sensing Approach using the European Field Experiment in a Desertification-Threatened Area Data’. Water Resour. Res. 32:2775–2786CrossRefGoogle Scholar
  43. Rabin R.M., Burns B.A., Collimore C., Diak G.R., Raymond W. (2000) ‘Relating Remotely-sensed Vegetation and Soil Moisture Indices to Surface Energy Fluxes in Vicinity of an Atmospheric Dryline’. Remote Sens. Rev. 18:53–82Google Scholar
  44. Raupach R.R., Finnigan J.J. (1995). ‘Scale Issues in Boundary-Layer Meteorology: Surface Energy Balances in Heterogeneous Terrain’. Hydro. Proc. 9:589–612CrossRefGoogle Scholar
  45. Ridder K.D. (2000). ‘Remote Sensing of Parameters that Regulate Energy and Water-Transfer at the Land–Atmosphere interface’. Phys. Chem. Earth Pt. B 25:159–165Google Scholar
  46. Roerink G.J., Su Z., Menenti M. (2000). ‘S-SEBI: A Simple Remote-sensing Algorithm to Estimate the Surface-Energy Balance’. Phys. Chem. Earth Pt. B 25:147–157Google Scholar
  47. Segal M., Arritt R.W. (1992). ‘Nonclassical Mesoscale Circulations caused by Surface Sensible Heat-Flux Gradients’. Bull. Am. Meteorol. Soc. 73:1593–1604CrossRefGoogle Scholar
  48. Song J., Wesely M.L. (2003). ‘On Comparison of Modelled Surface Flux Variations to Aircraft Observations’. Agr. Forest Meteorol. 117:159–171CrossRefGoogle Scholar
  49. Tennekes H. (1973). ‘A Model for the Dynamics of the Inversion above a Convective Boundary layer’. J. Atmos. Sci. 30: 558–567CrossRefGoogle Scholar
  50. Twine T.E., Kustas W.P., Norman J.M., Cook D.R., Houser P.R., Meyers T.P., Prueger J.H., Starks P.J., Wesely M.L. (2000). ‘Correcting Eddy-Covariance Flux Underestimates over a Grassland’. Agr. Forest Meteorol. 103:279–300CrossRefGoogle Scholar
  51. Weaver C.P. (2004). ‘Coupling between Large-scale Atmospheric Processes and Mesoscale Land–Atmosphere Interactions in the U.S. Southern Great Plains during Summer. Part I: Case Studies’. J Hydrometeorol. 5:1223–1246CrossRefGoogle Scholar
  52. Wesely M.W., Cook D.R., Coulter R.L. (1995). ‘Surface Heat Flux Data from Energy Balance Bowen Ratio Systems’, in Ninth Symposium on Meteorological Observations and Instrumentation, Charlotte, NC, 27–31 March 1995, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 486–489, preprintGoogle Scholar
  53. Wetzel P.J., Chang J. (1987). ‘Concerning the Relationship between Evapotranspiration and Soil Moisture’. J. Clim. Appl. Meteorol. 26:18–27CrossRefGoogle Scholar
  54. Wood N., Mason P.J. (1991). ‘The Influence of Stability on the Effective Roughness Lengths for Momentum and Heat Flux’. Quart J. Roy. Meteorol. Soc. 117:1025–1056CrossRefGoogle Scholar
  55. Yan H., Anthes R.A. (1988). ‘The Effects of Variations in Surface Moisture on Mesoscale Circulations’. Mon. Wea. Rev. 116:192–208CrossRefGoogle Scholar
  56. Zhong S., Doran J.C. (1997). ‘A Study of the Effects of Spatially Varying Fluxes on Cloud Formation and Boundary Layer Properties using Data from the Southern Great Plains Cloud and Radiation Testbed’. J. Climate 10:327–341CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ankur R. Desai
    • 1
    Email author
  • Kenneth J. Davis
    • 1
  • Christoph J. Senff
    • 2
  • Syed Ismail
    • 3
  • Edward V. Browell
    • 3
  • David R. Stauffer
    • 1
  • Brian P. Reen
    • 1
  1. 1.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkU.S.A
  2. 2.Atmospheric Lidar DivisionNOAA Environmental Technology LaboratoryBoulderU.S.A
  3. 3.Atmospheric Sciences DivisionNASA Langley Research CenterHamptonU.S.A

Personalised recommendations