Boundary-Layer Meteorology

, Volume 121, Issue 1, pp 89–110 | Cite as

Scintillometer-Based Turbulent Fluxes of Sensible and Latent Heat Over a Heterogeneous Land Surface – A Contribution to Litfass-2003

  • W. M. L. Meijninger
  • F. Beyrich
  • A. Lüdi
  • W. Kohsiek
  • H. A. R. De. Bruin


The performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintillometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003. For this purpose the LAS–MWS system was installed in a moderate heterogeneous landscape over a path length of 4.7 km with an effective beam height of 43 m. The derived surface fluxes have been compared with aggregated eddy-covariance (EC) measurements. The fluxes of sensible and latent heat from the LAS–MWS combination, as well as sensible heat fluxes of the single LAS, agreed fairly well with the EC-based fluxes, considering the uncertainties of the similarity stability functions and observed energy imbalance.


Area-averaged surface fluxes Evaporation Heterogeneous area Large aperture scintillometer LITFASS-2003 Millimetre wave scintillometer Scintillometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas E.L., (1988), ‘Estimating C n2 over Snow and Sea Ice from Meteorological Data’. J. Opt. Soc. Amer. 5, 481–495Google Scholar
  2. Andreas E.L., (1989), ‘Two-Wavelength Method of Measuring Path-Averaged Turbulent Surface Heat Fluxes’. J. Atmos. Ocean. Tech. 6, 280–292CrossRefGoogle Scholar
  3. Andreas E.L., (1990), ‘Three-Wavelength Method of Measuring Path-Averaged Turbulent Heat Fluxes’. J. Atmos. Ocean. Tech. 7, 801–813CrossRefGoogle Scholar
  4. Andreas E.L., (1991), ‘Using Scintillation at Two Wavelengths to Measure Path-Averaged Heat Fluxes in Free Convection’. Boundary-Layer Meteorol. 54, 167–182CrossRefGoogle Scholar
  5. Bange J., Herold M., Spieβ, T., Beyrich F., and Hennemuth B., (2006), ‘Turbulent Fluxes from Helipod Flights above the Heterogeneous LITFASS Area’. Boundary-Layer Meteorol., this issue.Google Scholar
  6. Beyrich F., De Bruin H.A.R., Meijninger W.M.L., and Schipper F., (2002)a, ‘Experiences from One-Year Continuous Operation of a Large Aperture Scintillometer over a Heterogeneous Land Surface’. Boundary-Layer Meteorol. 105, 85–97CrossRefGoogle Scholar
  7. Beyrich F., Foken T., and Herzog H.J., (2002)b, ‘The LITFASS-98 Experiment’. Theor. Appl. Climatol. 73(1–2): 1–2CrossRefGoogle Scholar
  8. Beyrich F., Mengelkamp H.T., (2006), ‘Evaporation over a Heterogeneous Land Surface: EVA_GRIPS and the LITFASS-2003 Experiment – An Overview’. Boundary-Layer Meteorol., this issue.Google Scholar
  9. Beyrich F., Leps, J-P., Mauder M., Foken T., Bange J., Huneke S., Lohse H., Lüdi A., Meijninger W.M.L., Mironov D., Weisensee U., and Zittel P., (2006), ‘Area-averaged Surface Fluxes over the LITFASS Region from Eddy-Covariance Measurements’. Boundary-Layer Meteorol., this issueGoogle Scholar
  10. Chehbouni A., Watts C., Lagouarde J.-P., Kerr Y.H., Rodriguez J.-C., Bonnefond J.-M., Santiago F., Dedieu G., Goodrich D.C., and Unkrich C., (2000), ‘Estimation of Heat and Momentum Fluxes over Complex Terrain Using a Large Aperture Scintillometer’. Agric. For. Meteorol. 105, 215–226CrossRefGoogle Scholar
  11. Clifford S.F., (1971), ‘Temporal-Frequency Spectra for a Spherical Wave Propagating through Atmospheric Turbulence’. J. Opt. Soc. Amer. 61, 1285–1292Google Scholar
  12. Clifford S.F., Ochs G.R., and Lawrence R.S., (1974), ‘Saturation of Optical Scintillation by Strong Turbulence’. J. Opt. Soc. Amer. 64(2): 148–154Google Scholar
  13. De Bruin H.A.R., (1989), ‘Physical Aspects of the Planetary Boundary Layer with Special reference to Regional Evapotranspiration’. in Proceedings of the Workshop on the Estimation of Areal Evapotranspiration, Vancouver, BC, August 9–22, 1987, IAHS Publ. 177, pp. 117–132.Google Scholar
  14. De Bruin H.A.R., Kohsiek W., and Van den Hurk, B. J. J. M., (1993), ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat and Water Vapour using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’. Boundary-Layer Meteorol. 63, 231–257CrossRefGoogle Scholar
  15. De Bruin H.A.R., Van den Hurk, B. J. J. M., and Kohsiek W., (1995), ‘The Scintillation Method Tested Over a Dry Vineyard Area’. Boundary-Layer Meteorol. 76, 25–40CrossRefGoogle Scholar
  16. Foken T., Wimmer F., Mauder M., Thomas C., and Liebethal C., (2006), ‘Some Aspects of the Energy Balance Closure Problem’. Boundary-Layer Meteorol., this issue.Google Scholar
  17. Green A.E., Green S.R., Astill M.S., and Caspari H.W., (2000), ‘Estimating Latent Heat Flux from a Vineyard Valley Using Scintillometry’. J. Terres. Atmos. Ocean. Sci. 11(2): 525–542Google Scholar
  18. Green A.E., Astill M.S., McAneney K.J., and Nieveen J.P., (2001), ‘Path-Averaged Surface Fluxes Determined from Infrared and Microwave Scintillometers’. Agric. For. Meteorol. 109, 233–247CrossRefGoogle Scholar
  19. Hartogensis O.K., Watts C.J., Rodriguez, J-C., and De Bruin, H. A. R., (2003), ‘Derivation of an Effective Height for Scintillometers: La Poza Experiment in Northwest-Mexico’. J. Hydro-Meteorol. 4(5): 915–928Google Scholar
  20. Hill R.J., Clifford S.F., and Lawrence R.S., (1980), ‘Refractive Index and Absorption Fluctuations in the Infrared Caused by Temperature, Humidity and Pressure Fluctuations’. J. Opt. Soc. Amer. 70(10): 1192–1205Google Scholar
  21. Hill R.J., Clifford S.F., (1981), ‘Theory of Saturation of Optical Scintillation by Strong Turbulence for Arbitrary Refractive-Index Spectra’. J. Opt. Soc. Amer. 71, 675–686Google Scholar
  22. Hill R.J., Bohlander R.A., Clifford S.F., McMillan R.W., Priestley J.T., and Schoenfeld W.P., (1988), ‘Turbulence-Induced Millimetre-Wave Scintillation Compared with Micro-Meteorological Measurements’. IEEE Trans. Geosci. Remote Sens. 26, 330–342CrossRefGoogle Scholar
  23. Hill R.J., (1997), ‘Algorithms for Obtaining Atmospheric Surface-Layer Fluxes from Scintillation Measurements’. J. Atmos. Ocean. Tech. 14, 456–467CrossRefGoogle Scholar
  24. Horst T.W., Weil J.C., (1992), ‘Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer’. Boundary-Layer Meteorol. 59, 279–296CrossRefGoogle Scholar
  25. Horst T.W., Weil J.C., (1994), ‘How Far is Far Enough? The Fetch Requirements for Micrometeorological Measurements of Surface Fluxes’. J. Atmos. Ocean. Tech. 11, 1018–1025CrossRefGoogle Scholar
  26. Kohsiek W., (1982a), Optical and In Situ Measuring of Structure Parameters Relevant to Temperature and Humidity, and Their Application to the Measuring of Sensible and Latent Heat Flux NOAA Tech Memor ERL WPL-96. NOAA Environmental Research Laboratories, Boulder CO USA, 64 ppGoogle Scholar
  27. Kohsiek W., (1982b), ‘Measuring C T2, C q2 and C Tq in the Unstable Surface Layer, and Relations to the Vertical Fluxes of Heat and Moisture’. Boundary-Layer Meteorol. 24, 89–107CrossRefGoogle Scholar
  28. Kohsiek W., Herben, M. H. A. J., (1983), ‘Evaporation Derived from Optical and Radio Wave Scintillation’. Appl. Optics. 22, 2566–2569CrossRefGoogle Scholar
  29. Kohsiek W., Meijninger W.M.L., De Bruin H.A.R., and Beyrich F., (2006), ‘Saturation of the Large Aperture Scintillometer’. Boundary-Layer Meteorol., this issue.Google Scholar
  30. Lagouarde J-P., McAneney K.J., and Green A.E., (1996), ‘Scintillometer Measurements of Sensible Heat Flux over Heterogeneous Surfaces’. In: Stewart J.B., Engman E.T., Fedde R.A., and Kerr Y. (eds), Scaling Up in Hydrol. using Remote Sensing. John Wiley, Chichester UK, pp. 147–160Google Scholar
  31. Lagouarde, J-P., Bonnefond, J-M., Kerr Y.H., McAneney K.J., and Irvine M., (2002), ‘Integrated Sensible Heat Flux Measurements of a Two-Surface Composite Landscape using Scintillometry’. Boundary-Layer Meteorol. 105, 4–37CrossRefGoogle Scholar
  32. Lüdi A., Beyrich F., and Mätzler C., (2005), ‘Determination of the Turbulent Temperature-Humidity Correlation from Scintillometric Measurements’. Boundary-Layer Meteor., in press.Google Scholar
  33. Mahrt L., (1998), ‘Flux Sampling Errors for Aircraft and Towers’. J. Atmos. Oceanic Tech. 15, 416–429CrossRefGoogle Scholar
  34. Manabu K., Atsushi I., Letzel M.O., Raasch S., and Watanabe T., (2004), ‘LES Study of the Energy Imbalance Problem with Eddy Covariance Fluxes’. Boundary-Layer Meteorol. 110, 381–404CrossRefGoogle Scholar
  35. Martin L., (1999), ‘Transmissionsmessungen in der Troposphäre bei 94 GHz’. University of Bern, Bern SwitzerlandGoogle Scholar
  36. Mauder M., Liebethal C., Göckede M., Leps, J-P., Beyrich F., and Foken T., (2006), ‘Processing and Quality Control of Flux Data during LITFASS-2003’. Boundary-Layer Meteorol., this issue.Google Scholar
  37. Meijninger W.M.L., Hartogensis O.K., Kohsiek W., Hoedjes, J. C. B., Zuurbier R.M., and De Bruin H.A.R., (2002)a, ‘Determination of Area Averaged Sensible Heat Fluxes with a Large Aperture Scintillometer over a Heterogeneous Surface – Flevoland Field Experiment’. Boundary-Layer Meteorol. 105, 37–62CrossRefGoogle Scholar
  38. Meijninger W.M.L., Green A.E., Hartogensis O.K., Kohsiek W., Hoedjes J.C.B., Zuurbier R.M., and De Bruin H.A.R., (2002)b, ‘Determination of Area Averaged Water Vapour Fluxes with Large Aperture and Radio Wave Scintillometers over a Heterogeneous Surface – Flevoland Field Experiment’. Boundary-Layer Meteorol. 105, 63–83CrossRefGoogle Scholar
  39. Moene A.F., (2003), ‘Effects of Water Vapour on the Structure Parameter of the Refractive Index for Near-Infrared Radiation’. Boundary-Layer Meteorol. 107, 635–653CrossRefGoogle Scholar
  40. Nieveen J.P., Green A.E., and Kohsiek W., (1998), ‘Using a Large-Aperture Scintillometer to Measure Absorption and Refractive Index Fluctuations’. Boundary-Layer Meteorol. 87, 101–116CrossRefGoogle Scholar
  41. Ochs G.R., Wilson J.J., (1993), A Second-Generation Large Aperture Scintillometer, NOAA Tech Memor ERL ETL-232. NOAA Environmental Research Laboratories, Boulder, CO, USA, 24 pp.Google Scholar
  42. Otto W.D., Hill R.J., Sarma A.D., Wilson J.J., Andreas E.L., Gosz J.R., and Moore D.I., (1996), Results of The Millimeter-Wave Instrument Operated at Sevilleta, New Mexico, NOAA Tech. Memor. ERL ETL-262, NOAA Environmental Research Laboratories, Boulder, CO, USA, 47 pp.Google Scholar
  43. Panofsky H.A., Dutton J.A., (1984), Atmospheric Turbulence, Models and Methods for Engineering Applications. John Wiley & Sons, New York, 397 ppGoogle Scholar
  44. Sarma A.D., Hill R.J., (1996), A Millimeter Wave Scintillometer for Flux Measurements, NOAA Tech Memor ERL ETL-259, NOAA Environmental Research Laboratories, Boulder, CO, USA, 33 ppGoogle Scholar
  45. Shuttleworth W.J., (1988), ‘MacroHydrology – The New Challenge for Process Hydrology’. J. Hydrol. 100, 31–56CrossRefGoogle Scholar
  46. Troen I., Petersen E.L., (1989), European Wind Atlas. Risø National Laboratory, Røskilde, Denmark, 656 ppGoogle Scholar
  47. Wang T.I., Ochs G.R., and Clifford S.F., (1978), ‘A Saturation-Resistant Optical Scintillometer to Measure Cn2’. J. Opt. Soc. Amer. 69, 334–338Google Scholar
  48. Wesely M.L., (1976), ‘The Combined Effect of Temperature and Humidity on the Refractive Index’. J. Appl. Meteorol. 15, 43–49CrossRefGoogle Scholar
  49. Wyngaard J.C., Izumi Y., and Collins Jr. S.A., (1971), ‘Behaviour of the Refractive-Index-Structure Parameter Near the Ground’. J. Opt. Soc. Amer. 61, 1646–1650CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • W. M. L. Meijninger
    • 1
  • F. Beyrich
    • 2
  • A. Lüdi
    • 3
  • W. Kohsiek
    • 4
  • H. A. R. De. Bruin
    • 1
  1. 1.Meteorology and Air Quality GroupWageningen University and Research CentreAP WageningenThe Netherlands
  2. 2.Meteorological Observatory LindenbergGerman Meteorological Service (DWD)Tauche – OT LindenbergGermany
  3. 3.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  4. 4.Royal Netherlands Meteorological Institute (KNMI)AE De BiltThe Netherlands

Personalised recommendations