Boundary-Layer Meteorology

, Volume 119, Issue 1, pp 159–170 | Cite as

Determination of the convective boundary-layer height with laser remote sensing

  • Andrea LammertEmail author
  • Jens Bösenberg


Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.


Absolute humidity DIAL Lidar Mixing height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atmospheric Radiation Measurement (ARM) Program Fall (2000) Water Vapor IOP., 2000Google Scholar
  2. Beyrich, F., Adam, W. K., Bange, J., Behrens, K., Berger, F. H., Bernhofer, C., Bösenberg, J., Dier, H., Foken, T., Gdecke, M., Grsdorf, U., Gldner, J., Hennemuth, B., Heret, C., Huneke, S., Kohsiek, W., Lammert, A., Lehmann, V., Leiterer, U., Leps, J.-P., Liebethal, C., Lohse, H., Ldi, A., Mauder, M., Meijinger, W.M.L., Mengelkamp, H.-T., Queck, R., Richter, S.H., Spie, T., Stiller, B., Tittebrand, A., Weisensee, U., and Zittel P.: (2004), Verdunstung über einer heterogenen Landoberfläche – Das LITFASS-2003 Experiment, Ein Bericht. Arbeitsergebnisse Nr. 79, Deutscher Wetterdienst, Offenbach, Deutschland, ISSN 1430-0281Google Scholar
  3. Bösenberg J. (1998). ‘Ground-Based Differential Absorption Lidar for Water-vapor and Temperature Profiling: Methodology’. Appl.Optics 37, 3845–3860CrossRefGoogle Scholar
  4. Bösenberg, J., Matthias, V., Amodeo, A., Amoiridis, V., Ansmann, A., Baldasano, J. M., Balin, I., Böckmann, C., Boselli, A., Carlsson, G., Chaykovski, A., Chourdakis, G., Comeron, A., DeTomasi, F., Eixmann, R., Freudenthaler, V., Giehl, H., Grigorov, I., Hågård, A., Iarlori, M., Kirsche, A., Kolarov, G., Komguem, L. and Kreipl, S., Kumpf, W., Larchevêque, G., Linne, H., Matthey, R., Mattis, I., Mekler, A., Mironova, I., Mitev, V., Mona, L., Müller, D., Music, S., Nickovic, S., Pandolfi, M., Papayannis, A., Pappalardo, G., Pelon, J., Peres, C., Perrone, R.M., Persson, R., Resendes, D.P., Rizi, V., Rocadenbosch, F., Rodriguez, J., Sauvage, L., Schneidenbach, L., Schumacher, R., Shcherbakov, V., Simeonov, V., Sobolewski, P., Spinelli, N., Stachlewska, I., Stoyanov, D., Trickl, T., Tsaknakis, G., Vaughan, G., Wandinger, U., Wang, X., Wiegner, M., Zavrtanik M., and Zerefos, C.: (2003), ‘EARLINET: ‘A European Aerosol Research Lidar Network to Establish an Aerosol Climatology’, Report of the Max-Planck-Institute for Meteorology, Hamburg, Germany, pp. 348Google Scholar
  5. Cohn S.A., Angevine W.M. (1999). ‘Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars’. J. Appl. Meteorol. 39, 1233–1247CrossRefGoogle Scholar
  6. Davis K.J., Gamage N., Hagelberg C.R., Kiemle C., Lenschow D.H. Sullivan P.P. (2000). ‘An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic Tech. 17, 1455–1468CrossRefGoogle Scholar
  7. Ertel, K.: (2004), ‘Application and Development of Water Vapor DIAL Systems’, Dissertation, Universität Hamburg, Scholar
  8. Flamant C., Pelon J., Flamant P.H., Durand P. (1997). Lidar Determination of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer’. Boundary-Layer Meterol. 83, 247–284CrossRefGoogle Scholar
  9. Fochesatto G.J., Drobinski P., Flamant C., Guedalia D., Sarrat C., Flamant P.H., Pelon J. (2001). ‘Evidence of Dynamical Coupling between the Residual Layers and the Developing Convective Boundary Layer’. Boundary-Layer Meteorol. 99, 451–464CrossRefGoogle Scholar
  10. Joffre S.M., Kankgas M., Heikinheimo M., Kitaigorodskii S.A. (2001). ‘Variability of the Stable and Unstable Atmospheric Boundary-layer height and its Scales over a Boreal Forest’. Boundary-Layer Meteorol. 99, 429–450CrossRefGoogle Scholar
  11. Lammert, A.: (2004), Untersuchung der turbulenten Grenzschicht mit Laserfernerkundung. Dissertation, Universität Hamburg, Scholar
  12. Menut L., Flamant C., Pelon J., Flamant P.H. (1999). ‘Urban Boundary-Layer Height Determination from Lidar Measurements over the Paris Area’. Appl. Optics. 38, 945–954Google Scholar
  13. Schwiesow R.L. (1986). Lidar Measurement of Boundary-Layer Variables. In: Lenschow D.H. (ed). Probing the Atmospheric Boundary Layer. AMS, Boston, pp. 139–162Google Scholar
  14. Seibert P., Beyrich F., Gryning S.E., Joffre S., Rasmussen A., Tercier P. (2000). Review and Intercomparison of Operational Methods for the Determination of the Mixing Height. Atmos. Environ. 34, 1001–1027CrossRefGoogle Scholar
  15. Steyn D.G., Baldi M., Hoff R.M. (1999). The Detection of Mixing Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles. J. Atmos. Oceanic. Tech. 16(7): 953–959CrossRefGoogle Scholar
  16. Stull R.B. (1988). An Introduction to Boundary-Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, LondonGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.GKSS Research CentreGeesthachtGermany
  2. 2.Max-Planck-Institute for MeteorologyHamburgGermany

Personalised recommendations