Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 401–420 | Cite as

Study of the Probability Density Functions From a Large-Eddy Simulation for a Stably Stratified Boundary Layer

  • M. A. JiménezEmail author


Turbulence in a non-strongly stably stratified large-eddy simulation (LES) case is studied through probability density functions (PDFs) to obtain additional information than that provided by classical LES averages. The PDFs are computed for one hour within the steady-state regime at three different levels: near the surface, in the middle and at the top of the boundary layer, for the wind components and the temperature. The physical significance of these PDFs from LES is discussed and they are compared to those obtained from observations. The analysis of the eddy structures within the stably stratified boundary layer is made through the combined study of the fields, the spectra and the statistical moments obtained from the PDFs and joint PDFs. The homogeneity of the fields is inspected through a comparison of the ensemble to the temporal and the spatial PDFs, showing that the ergodic theorem is not fulfilled. To this end, the sensitivity of the PDF moments to the LES resolution is explored.


Ergodicity Gaussianity Large-eddy Simulations Probability density functions Stably stratified boundary layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams N.A., and Stolz S., (2002), ‘A Subgrid-Scale Deconvolution Approach for Shock Capturing’. J. Comput. Phys. 178, 391–426CrossRefGoogle Scholar
  2. Beare R.J., MacVean M.K., Holtslag A.A.M., Cuxart J., Esau I., Golaz J.-C., Jiménez M.A., Khairoutdinov M., Kosovic B., Lewellen D., Lund T.S., Lundquist J.K., McCabe A., Moene A.F., Noh Y., Raasch S., and Sullivan P., (2006), ‘An Inter-Comparison of Large-eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. In press.Google Scholar
  3. Chu C.R., Parlange M.B., Katul G.G., and Albertson J.D., (1996), ‘Probability Density Functions of Turbulent Velocity and Temperature in the Atmospheric Surface Layer’. Water Resources Res. 32, 1681–1688CrossRefGoogle Scholar
  4. Cuxart J., Bougeault P., and Redelsperger J.-L., (2000), ‘A Turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126, 1–30CrossRefGoogle Scholar
  5. Cuxart J., Holtslag A.A.M., Beare R.J., Bazile E., Beljaars A., Conangla L., Ek M., Freedman F., Hamdi R., Kerstein A., Kitagawa A., Lenderink G., Lewellen D., Mailhot J., Mauritsen T., Perov V., Schayes G., Steeneveld G.-J., Svensson G., Taylor P., Weng W., Wunsch S., and Xu K.-M., (2006), ‘Single-column Model Inter-Comparison for a Stably Stratified Atmospheric Boundary Layer’. Boundary-Layer Meteorol. In press.Google Scholar
  6. Deardorff J.W., Willis G.E., (1985), ‘Further Results from a Laboratory Model of the Convective Planetary Boundary Layer’. Boundary-Layer Meteorol. 32, 205–236CrossRefGoogle Scholar
  7. Jiménez M.A., and Cuxart J., (2005), ‘Large-eddy Simulations of the Stable Boundary Layer using the Standard Kolmogorov Theory: Range of Applicability’. Boundary-Layer Meteorol. 115, 241–261CrossRefGoogle Scholar
  8. Kampé de Fériet J., (1939), ‘Les Fonctions Aléatoires Stationnaires et la Théorie Statistique de la Turbulence Homogéne’. Ann. Soc. Sci. Bruxelles 59, 145–194Google Scholar
  9. Kosovic B., Curry J.A., (2000), ‘A Large Eddy Simulation Study of a Quasi-steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57, 1052–1068CrossRefGoogle Scholar
  10. Lafore J.P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fisher C., Héreil P., Mascart P., Masson V., Pinty J.P., Redelsperger J.-L., Richard E., Vilá-Guerau de Arellano J., (1998), ‘The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16, 90–109CrossRefGoogle Scholar
  11. Larson V.E., Wood R., Field P.R., Golaz J.-C., Vonder, T. H and Cotton W.R., (2001), ‘Small-scale and Mesoscale Variability of Scalars in Cloudy Boundary Layers: One-dimensional Probability Density Functions’. J. Atmos. Sci. 58, 1978–1994CrossRefGoogle Scholar
  12. Mahrt L., Paumier J., (1984), ‘Heat Transport in the Atmospheric Boundary Layer’. J. Atmos. Sci. 41, 3061–3075CrossRefGoogle Scholar
  13. Millionshchikov M.D., (1939), ‘Decay of Homogeneous Isotropic Turbulence in Viscous Incompressible Fluids’. Doklady AN SSSR 22, 236–240Google Scholar
  14. Monin A.S., Yaglom A.M., (1971), ‘Statistical Fluid Mechanics. Vol. I’ The Massachusetts Institute of Technology, 769 pp.Google Scholar
  15. Nieuwstadt F.T.M., Mason P.J., Moeng C.-H., Schumann U., (1993), ‘Large-eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer codes’. in Durst et al. (eds)., Turbulent shear flows 8 Springer-Verlag, 343–367.Google Scholar
  16. Tennekes H., Lumley J.L., (1982), A First Course in Turbulence, The Massachusetts Institute of Technology, 300 pp.Google Scholar
  17. Thoroddsen S.T., Van Atta C.W., (1992), ‘Exponential Tails and Skewness of Density-Gradient Probability Density Functions in Stably Stratified Turbulence’. J. Fluid Mech. 244, 547–566CrossRefGoogle Scholar
  18. Wang S., Stevens B., (2000), ‘Top-Hat Representation of Turbulence Statistics in Cloud-topped Boundary Layers: A Large Eddy Simulation Study’. J. Atmos. Sci. 57, 432–441MathSciNetGoogle Scholar
  19. Wilks D.S., (1995), Statistical Methods in the Atmospheric Sciences. Academic Press, New York, pp. 467Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Grup Meteorologia, Dpt. FísicaUniversitat de les Illes Balears (UIB)Palma de MallorcaSpain

Personalised recommendations