Boundary-Layer Meteorology

, Volume 118, Issue 3, pp 477–501 | Cite as

Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions

  • Aude Lemonsu
  • Sophie Bastin
  • Valéry Masson
  • Philippe Drobinski


During the UBL-ESCOMPTE program (June–July 2001), intensive observations were performed in Marseille (France). In particular, a Doppler lidar, located in the north of the city, provided radial velocity measurements on a 6-km radius area in the lowest 3 km of the troposphere. Thus, it is well adapted to document the vertical structure of the atmosphere above complex terrain, notably in Marseille, which is bordered by the Mediterranean sea and framed by numerous massifs. The present study focuses on the last day of the intensive observation period 2 (26 June 2001), which is characterized by a weak synoptic pressure gradient favouring the development of thermal circulations. Under such conditions, a complex stratification of the atmosphere is observed. Three-dimensional numerical simulations, with the Méso-NH atmospheric model including the town energy balance (TEB) urban parameterization, are conducted over south-eastern France. A complete evaluation of the model outputs was already performed at both regional and city scales. Here, the 250-m resolution outputs describing the vertical structure of the atmosphere above the Marseille area are compared to the Doppler lidar data, for which the spatial resolution is comparable. This joint analysis underscores the consistency between the atmospheric boundary layer (ABL) observed by the Doppler lidar and that modelled by Méso-NH. The observations and simulations reveal the presence of a shallow sea breeze (SSB) superimposed on a deep sea breeze (DSB) above Marseille during daytime. Because of the step-like shape of the Marseille coastline, the SSB is organized in two branches of different directions, which converge above the city centre. The analysis of the 250-m wind fields shows evidence of the role of the local topography on the local dynamics. Indeed, the topography tends to reinforce the SSB while it weakens the DSB. The ABL is directly affected by the different sea-breeze circulations, while the urban effects appear to be negligible.


Atmospheric boundary layer Doppler lidar Numerical simulation Sea breezes Topography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banta R. M. (1995). ‘Sea Breezes Shallow and Deep on the California Coast’. Mon. Wea. Rev. 123: 3614–3622CrossRefGoogle Scholar
  2. Banta R. M., Olivier L. D. and Levinson D. H. (1993). ‘Evolution of the Monterey Bay Sea-Breeze Layer as Observed by Pulsed Doppler Lidar’. J. Atmos. Sci. 50: 3959–3982CrossRefGoogle Scholar
  3. Bastin S. and Drobinski P. (2005). ‘Temperature and Wind Velocity Oscillations Along a Gentle Slope During Sea Breeze Events’. Boundary-Layer Meteorol. 114: 573–594CrossRefGoogle Scholar
  4. Bastin S., Drobinski P., Dabas A. M., Delville P., Reitebuch O. and Werner C. (2005a). ‘Impact of the Rhône and Durance Valleys on Sea-Breeze Circulation in the Marseille Area’. Atmos. Res. 74: 303–328CrossRefGoogle Scholar
  5. Bastin S., Drobinski P., Dabas A., Delville P., Reitebuch O. and Werner C. (2004). ‘Sea Breeze Case Study using a Combination of Observations and Numerial Stimulation in Complex Terrain in Southern France: Contribution to Matter Transport’. Mt Washington Valley, New Hampshire, USAGoogle Scholar
  6. Beffrey G., Jaubert G. and Dabas A. M. (2004). ‘Foehn Flow and Stable Air-Mass in the Rhine Valley: The Beginning of a MAP Event’. Quart. J. Roy. Meteorol. Soc. 130: 541–560CrossRefGoogle Scholar
  7. Calhoun R., Heap R. B., Princevac M., Sommer J., Fernando H. J. S. and Ligon D. (2004). ‘Measurement of Winds Flowing Toward an Urban Area Using Coherent Doppler Lidar’. Fifth Conference on Urban Environment Vancouver, CanadaGoogle Scholar
  8. Carroll J. J. (1989). ‘Analysis of Airborne Doppler Lidar Measurements of the Extended California Sea Breeze’. J. Atmos. Ocean. Technol. 6: 820–831CrossRefGoogle Scholar
  9. CEC (1993). ‘CORINE Land Cover, Technical Guide’. Office for the Official Publications of the European Communities, LuxembourgGoogle Scholar
  10. Chiba O., Kobayashi F., Naito G. and Sassa K. (1999). ‘Helicopter Observations of the Sea Breeze over a Coastal Area’. J. Appl. Meteorol. 38: 481–492CrossRefGoogle Scholar
  11. Cros B., Durand P., Cachier H., Drobinski P., Frejafon E., Kottmeier C., Perros P. E., Peuch V.-H., Ponche J. L., Robin D., Saïd F., Toupance G. and Wortham H. (2004). ‘The ESCOMPTE Program: An Overview’. Atmos. Res. 69: 241–279CrossRefGoogle Scholar
  12. Darby L. S., Banta R. M. and Pielke R. A. (2002). ‘Comparisons between Mesoscale Model Terrain Sensitivity Studies and Doppler Lidar Measurements of the Sea Breeze at Monterey Bay’. Mon. Wea. Rev. 130: 2813–2838CrossRefGoogle Scholar
  13. Davies F., Collier C. G., Pearson G. N. and Bozier K. E. (2004). ‘Doppler Lidar Measurements of Turbulent Structure Function over an Urban Area’. J. Atmos. Ocean. Technol. 21: 753–761CrossRefGoogle Scholar
  14. Deardorff J. W. (1974). ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’. Boundary-Layer Meteorol. 7: 199–126Google Scholar
  15. Delbarre S., Augustin P., Freville P., Campistron B., Saïd F., Bénech B., Lohou F., Puygrenier V. and Fréjafon E. (2005). ‘Ground-Based Remote Sensing Observation of the Complex Behaviour of the Marseille Boundary Layer during ESCOMPTE’. Atmos. Res. 74(1–4): 403–433CrossRefGoogle Scholar
  16. Dousset B. and Kermadi S. (2003). ‘Satellites Observation over the Marseille-Berre Area during the UBL/CLU-ESCOMPTE Experiment’. Lódź, PolandGoogle Scholar
  17. Drobinski P., Bastin S., Guénard V., Caccia J.-L., Dabas A. M., Delville P., Protat A., Reitebuch O. and Werner C. (2005a). ‘Summer Mistral at the Exit of the Rhône Valley’. Quart. J. Roy. Meteorol. Soc. 131: 353–375CrossRefGoogle Scholar
  18. Drobinski, P., Bastin, S., Dusek, J., Zängl, G., and Flamant, P. H.: 2005b, ‘Idealized Simulations of Flow Splitting at the Bifurcation Between Two Valleys: Comparison with the Mesoscale Alpine Program Experiment’, Meteorol. Atmos. Phys., in press.Google Scholar
  19. Drobinski P., Dabas A. M., Haeberli C. and Flamant P. H. (2001a). ‘On the Small-Scale Dynamics of Flow Splitting in the Rhine Valley during a Shallow South Foehn Event’. Boundary-Layer Meteorol. 99: 277–296CrossRefGoogle Scholar
  20. Drobinski P., Dusek J. and Flamant C. (2001b). ‘Diagnostics of Hydraulic Jump and Gap Flow in Stratified Flows over Topography’. Boundary-Layer Meteorol. 98: 475–495CrossRefGoogle Scholar
  21. Drobinski P., Haeberli C., Richard E., Lothon M., Dabas A. M., Flamant P. H., Furger M. and Steinacker R. (2003). ‘Scale Interaction Processes during the MAP IOP 12 South Foehn Event in the Rhine Valley’. Quart. J. Roy. Meteorol. Soc. 129: 729–753CrossRefGoogle Scholar
  22. Estoque M. A. (1962). ‘The Sea Breeze as a Function of the Prevailing Synoptic Situation’. J. Atmos. Sci. 19: 244–250CrossRefGoogle Scholar
  23. Finkele K., Hacker J. M., Kraus H. and Byron-Scott R. A. D. (1995). ‘A Complete Sea Breeze Circulation Cell Derived from Aircraft Observations’. Boundary-Layer Meteorol. 73: 299–317CrossRefGoogle Scholar
  24. Grimmond C. S. B., Salmond J., Oke T. R., Offerle B. and Lemonsu A. (2004). ‘Flux and Turbulence Measurements at a Densely Built-Up Site in Marseille: Heat, Mass (Water, Carbon Dioxide) and Momentum’. J. Geophys. Res. 109: D24101 doi:10.1029/2004JD004936CrossRefGoogle Scholar
  25. Guénard V., Drobinski P., Caccia J.-L., Campistron B. and Bénech B. (2005). ‘Experimental Investigation of the Mesoscale Dynamics of the Mistral’. Boundary-Layer Meteorol. 115: 263–288CrossRefGoogle Scholar
  26. Kambezidis H. D., Peppes A. A. and Melas D. (1995). ‘An Environmental Experiment over Athens Urban Area under Sea Breeze Conditions’. Atmos. Res. 36: 139–156CrossRefGoogle Scholar
  27. Lafore J.-P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Héreil P., Mascart P., Masson V., Pinty J.-P., Redelsperger J.-L., Richard E. and Vilà-Gueraude Arellano J. (1998). ‘The Meso-Nh atmospheric simulation system Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16: 90–109CrossRefGoogle Scholar
  28. Lemonsu A., Grimmond C. S. B. and Masson V. (2004). ‘Modelisation of the Surface Energy Budget of an Old Mediterranean City Core’. J. Appl. Meteorol. 43: 312–327CrossRefGoogle Scholar
  29. Lemonsu, A., Pigeon, G., Masson, V., and Moppert, C.: 2005, ‘Sea-Town Interaction over Marseille: 3D Urban Boundary Layer and Thermodynamic Fields near the Surface’, Theor. Appl. Clim., in press.Google Scholar
  30. Lemonsu A. and Masson V. (2002). ‘Simulation of a Summer Urban Breeze over Paris’. Boundary-Layer Meteorol. 104: 463–490CrossRefGoogle Scholar
  31. Masson V. (2000). ‘A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models’. Boundary-Layer Meteorol. 94: 357–397CrossRefGoogle Scholar
  32. Mestayer P., Durand P., Augustin P., Bastin S., Bonnefond J.-M., Bénech B., Campistron B., Coppalle A., Delbarre H., Dousset B., Drobinski P., Druilhet A., Fréjafon E., Grimmond S., Groleau D., Irvine M., Kergomard C., Kermadi S., Lagouarde J.-P., Lemonsu A., Lohou F., Long N., Masson V., Moppert C., Noilhan J., Offerle B., Oke T., Pigeon G., Puygrenier V., Roberts S., Rosant J.-M., Saïd F., Salmond J., Talbaut M. and Voogt J. (2005). ‘The Urban Boundary Layer Field Experiment over Marseille UBL/CLU-ESCOMPTE: Experimental Set-up and First Results’. Boundary-Layer Meteorol. 114: 315–365CrossRefGoogle Scholar
  33. Noilhan J. and Planton S. (1989). ‘A Simple Parameterization of Land Surface Processes for Meteorological Models’. Mon. Wea. Rev. 117: 536–549CrossRefGoogle Scholar
  34. Ohashi Y. and Kida H. (2002). ‘Effects of Mountains and Urban Areas on Daytime Local-Circulations in the Osaka and Kyoto Region’. J. Meteorol. Soc. Japan 80: 539–560CrossRefGoogle Scholar
  35. Physick W. L. and Byron-Scott R. A. D. (1977). ‘Observations of the Sea Breeze in the Vicinity of a Gulf’. Weather 32: 373–381Google Scholar
  36. Pooler F. (1963). ‘Airflow over the City in Terrain of Moderate Relief’. J. Appl. Meteorol. 2: 446–455CrossRefGoogle Scholar
  37. Schär C. and Smith R. B. (1993). ‘Shallow-Water Flow Past Isolated Topography. Part I: Vorticity Production and Wake Formation’. J. Atmos. Sci. 50: 1373–1400CrossRefGoogle Scholar
  38. Vukovich F. M., King W. J., Dunn J. W. and Worth J. J. B. (1979). ‘Observations and Simulations of the Diurnal Variation of the Urban Heat Island Circulation and Associated Variations of the Ozone Distribution: A Case Study’. J. Appl. Meteorol. 18: 836–854CrossRefGoogle Scholar
  39. Yoshikado H. and Kondo H. (1989). ‘Inland Penetration of the Sea Breeze in the Suburban Area of Tokyo’. Boundary-Layer Meteorol. 48: 389–407CrossRefGoogle Scholar
  40. Yoshikado H. (1990). ‘Vertical Structure of the Sea Breeze Penetrating through a Large Urban Complex’. J. Appl. Meteorol. 29: 878–891 CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Aude Lemonsu
    • 2
  • Sophie Bastin
    • 1
  • Valéry Masson
    • 2
  • Philippe Drobinski
    • 1
  1. 1.Institut Pierre Simon Laplace/Service d’AéronomieUniversité Pierre & Marie CurieParis Cedex 05France
  2. 2.Météo-FranceCentre National de Recherches MétéorologiquesCedexFrance

Personalised recommendations