Boundary-Layer Meteorology

, Volume 118, Issue 1, pp 189–216 | Cite as

The Influence of Hilly Terrain on Canopy-Atmosphere Carbon Dioxide Exchange

  • G. G. Katul
  • J. J. Finnigan
  • D. Poggi
  • R. Leuning
  • S. E. Belcher


Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then Nee = Fc, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, Fc departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged Fc-at canopy top differs by more than 20% compared to the flat-terrain case.


Advection Biosphere-atmosphere exchange Canopy flow Complex terrain Gentle hills Net ecosystem exchange Photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, J. D., Katul, G. G., Wiberg, P. 2001‘Relative Importance of Local and Regional Controls on Coupled Water, Carbon, and Energy Fluxes’Adv. Water Res.2411031118Google Scholar
  2. Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Berhofer, C., Davis, K., Evens, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Polegaard, U. K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S. 2001‘FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem – Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities’Bull. Amer. Meteorol. Soc.8224152434Google Scholar
  3. Belcher, S. E., Hunt, C. R. 1998‘Turbulent Flow over Hills and Waves’Ann. Rev. Fluid Mech.30507538CrossRefGoogle Scholar
  4. Belcher, S. E., Jerram, N., Hunt, J. C. R. 2003‘Adjustment of a Turbulent Boundary Layer to a Canopy of Roughness Elements’J. Fluid Mech.488369398CrossRefGoogle Scholar
  5. Brunet, Y., Finnigan, J. J., Raupach, M. R. 1994‘A Wind-Tunnel Study of Air-flow in Waving Wheat–Single-Point Velocity Statistics’Boundary-Layer Meteorol.7095132CrossRefGoogle Scholar
  6. Campbell, G. S., Norman, J. M. 1998An Introduction to Environmental BiophysicsSpringerNew York286Google Scholar
  7. Collatz, G. J., Ball, J. T., Grivet, C., Berry, J. A. 1991‘Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: A Model that Includes a Laminar Boundary Layer’Agric. For. Meteorl.54107136Google Scholar
  8. Carruthers, D. J. and Hunt, J. C. R.: 1990, ‘Fluid Mechanics of Airflow over Hills: Turbulence, Fluxes, and Waves in the Boundary Layer’, in Atmospheric Processes over Complex Terrain, Meteorolpgical Monographs, Vol. 23, American Meteorological Society, Boston; MA, pp. 83–103.Google Scholar
  9. Denmead, O. T., Bradley, E. F. 1985‘F1ux Gradient Relationships in a Forest Canopy’Hutchison, B. A.Hicks, B. B. eds. The Forest-Atmosphere InteractionD. Reidel PublishingNorwell, Mass.421422Google Scholar
  10. Farquhar, G. D., Caemmerer, S., Berry, J. A. 1980‘A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 SpeciesPlanta1497890CrossRefGoogle Scholar
  11. Feigenwinter, C., Bernhofer, C., and Vogt, R.(2004). ‘The Influence of Advection on the Short Term CO2 Budget in and Above a Forest Canopy’, Boundary-Layer Meteorol., in pressGoogle Scholar
  12. Finnigan, J. J. 1985‘Turbulent Transport in Plant Canopies’Hutchinson, B. A.Hicks, B. B. eds. The Forest-Atmosphere Interactions, DReidel PublishingNorwell, Mass.443480Google Scholar
  13. Finnigan, J. J. 1998‘Air Flow over Complex Terrain’Steffen, W. L.Denmead, O. T. eds. Flow and Transport in the Natural Environment, Advances and ApplicationsSpringerBerlin183229Google Scholar
  14. Finnigan, J. J. 2000‘Turbulence Inside Plant Canopies’Ann. Rev. Fluid Mech.32519571CrossRefGoogle Scholar
  15. Finnigan, J. J. 2004‘Advection and Modeling’Lee, X.W. J.,  eds. Handbook of Micrometeorology: A Guide for Surface Flux MeasurementsKluwer Academic PublishersDordrecht209244Google Scholar
  16. Finnigan, J. J., Raupach, M. R. 1987‘Transfer Process Within Plant Canopies in Relation to Stomatal Characteristics’Zeiger, E. M.Farquhar, G. D.Cowan, I. R. eds. Stomatal FunctionStanford University PressStanford, CA385Google Scholar
  17. Finnigan, J.J., Belcher, S.E. 2004‘Flow over Hill Covered with a Plant Canopy’Quart. J. Roy. Meteorol. Soc.130129Part ACrossRefGoogle Scholar
  18. Hunt, J. C. R., Leibovich, S., Richards, K. J. 1998‘Turbulent Shear Flows over Low Hills’Quart. J. Roy. Meteorol. Soc.11414351470Google Scholar
  19. Jackson, P. S., Hunt, J. C. R. 1975‘Turbulent Wind Flow over a Low Hill’Quart. J. Roy. Meteorol. Soc.101929955CrossRefGoogle Scholar
  20. Kaimal, J. C., Finnigan, J. J. 1994Atmospheric Boundary Layer Flows: Their Structure and MeasurementOxford University PressNew York289Google Scholar
  21. Katul, G. G, Mahrt, L., Poggi, D., Sanz, C. 2004‘One and Two Equation Models for Canopy Turbulence’Boundary-Layer Meteorol.11381109CrossRefGoogle Scholar
  22. Katul, G. G., Ellsworth, D., Lai, C. T. 2000‘Modeling Assimilation and Intercellular CO2 from Measured Conductance: A Synthesis of Approaches’Plant, Cell Environ2313131328CrossRefGoogle Scholar
  23. Katul, G. G., Chang, W. H. 1999‘Principal Length Scales in Second-order Closure Models for Canopy Turbulence’J. Appl. Meteorol.3816311643CrossRefGoogle Scholar
  24. Katul, G. G., Geron, C. D., Hsieh, C. I., Vidakovic, B., Guenther, A. B. 1998‘Active Turbulence and Scalar Transport Near the Land-Atmosphere Interface’J. Appl. Meterol.3715331546Google Scholar
  25. Lai, C. T., Katul, G. G., Butnor, J., Ellsworth, D., Oren, R. 2002Modelling Night-time Ecosystem Respiration by a Constrained Source Optimization MethodGlobal Change Biol.8124141CrossRefGoogle Scholar
  26. Lai, C. T., Katul, G. G., Oren, R., Ellsworth, D., Scháfer, K. 2000‘Modeling CO2 and Water Vapor Turbulent Flux Distributions Within a Forest Canopy’J. Geophys. Res.1052633326351CrossRefGoogle Scholar
  27. Lee, X. 1998‘On Micrometeorological Observations of Surface-air Exchanges over Tall Vegetation’Agric. Forest Meteorol.913949CrossRefGoogle Scholar
  28. Leuning, R. 1995‘A Critical Appraisal of a Combined Stomatal-Photosynthesis Model for C3Plants’Plant, Cell Environ.18339355Google Scholar
  29. Massman, W. J., Weil, J. C. 1999‘An Analytical One-dimensional Second Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale Within and Above Plant Canopies of Arbitrary Structure’Boundary-Layer Meteorol.9181107CrossRefGoogle Scholar
  30. Physick, W. L., Garratt, J. R. 1995‘Incorporation of a High Roughness Lower Boundary Into a Mesoscale Model for Studies of Dry Deposition over Complex Terrain’Boundary-Layer Meteorol.745571Google Scholar
  31. Pinard, J. P., Wilson, J. D. 2001‘First- and Second Order Closure Models for Wind in a Plant Canopy’J. Appl. Meteorol.4017621768CrossRefGoogle Scholar
  32. Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D., Katul, G. G. 2004a‘The Effect of Vegetation Density on Canopy Sub-Layer Turbulence’Boundary-Layer Meteorol.111565587Google Scholar
  33. Poggi, D., Katul, G. G., Albertson, J. D. 2004b‘A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies’Boundary-Layer Meteorol.111615621Google Scholar
  34. Press, W. H., Teukolsky, S. A., Vetterling, W., Flannery, B. P. 1992Numerical Recipes in Fortran: The Art of Scientific Computing2Cambridge University PressNew York963Google Scholar
  35. Raupach, M. R., Finnigan, J. J. 1997‘The Influence of Topography on Meteorological Variables and Surface-Atmosphere InteractionsJ. Hydrol.190182213CrossRefGoogle Scholar
  36. Raupach, M. R., Finnigan, J. J., Brunet, Y. 1996‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy’Boundary-Layer Meteorol.78351382CrossRefGoogle Scholar
  37. Raupach, M. R., Weng, W. S., Carruthers, D. J., Hunt, J. C. R. 1992‘Temperature and Humidity Fields and Fluxes over Low Hills’Quart. J. Roy. Meteorol. Soc.118191225CrossRefGoogle Scholar
  38. Taylor, P. A., Mason, P. J., Bradley, E. F. 1987‘Boundary Layer Flow over Low Hills’Boundary-Layer Meterol.391539Google Scholar
  39. Wilson, J. D., Finnigan, J. J., Raupach, M. R. 1998‘A First Order Closure for Disturbed Plant-canopy Flows and Its Application to Winds in a Canopy on a Ridge’Quart. J. Roy. Meteorol. Soc.124705732CrossRefGoogle Scholar
  40. Wilson, N. R., Shaw, R. H. 1977‘A Higher Order Closure Model for Canopy Flow’J. Appl. Meteorol.1611981205CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • G. G. Katul
    • 1
  • J. J. Finnigan
    • 2
  • D. Poggi
    • 1
    • 3
  • R. Leuning
    • 2
  • S. E. Belcher
    • 4
  1. 1.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamU.S.A
  2. 2.CSIRO Atmospheric ResearchFC Pye LaboratoryCanberraAustralia
  3. 3.Dipartimento di IdraulicaTrasporti ed Infrastrutture Civili Politecnico di TorinoTorinoItaly
  4. 4.Department of MeteorologyUniversity of ReadingReadingU.K

Personalised recommendations