Boundary-Layer Meteorology

, Volume 118, Issue 3, pp 635–655 | Cite as

Update of a Footprint-Based Approach for the Characterisation of Complex Measurement Sites

  • Mathias Göckede
  • Tiina Markkanen
  • Charlotte B. Hasager
  • Thomas Foken


Horizontal heterogeneity can significantly affect the flux data quality at monitoring sites in complex terrain. In heterogeneous conditions, the adoption of the eddy-covariance technique is contraindicated by the lack of horizontal homogeneity and presence of advective conditions. In addition, uncertainty concerning the sources or sinks influencing a measurement compromises the data interpretation. The consideration of the spatial context of a measurement, defined by a footprint analysis, can therefore provide an important tool for data quality assessment. This study presents an update of an existing footprint-based quality evaluation concept for flux measurement sites in complex terrain. The most significant modifications in the present version are the use of a forward Lagrangian stochastic trajectory model for the determination of the spatial context of the measurements, and the determination of effective roughness lengths with a flux aggregation model in a pre-processing step. Detailed terrain data gathered by remote sensing methods are included. This approach determines spatial structures in the quality of flux data for varying meteorological conditions. The results help to identify terrain influences affecting the quality of flux data, such as dominating obstacles upwind of the site, or slopes biasing the wind field, so that the most suitable footprint regions for the collection of high-quality datasets can be identified. Additionally, the approach can be used to evaluate the performance of a coordinate rotation procedure, and to check to what extent the measured fluxes are representative for a target land-use type.


Complex terrain Eddy covariance Flux aggregation Footprint modelling Quality assurance Quality control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiro B.D. (1998). ‘Footprint Climatologies for Evapotranspiration in a Boreal Catchment’. Agric. For. Meteorol. 90: 195–201CrossRefGoogle Scholar
  2. Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R. and Vesala T. (2000). ‘Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX methodology’. Adv. Ecol. Res. 30: 113–175CrossRefGoogle Scholar
  3. Avissar R. and Pielke R.A. (1989). ‘A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and its Impact on Regional Meteorology’. Mon. Wea. Rev. 117: 2113–2136CrossRefGoogle Scholar
  4. Avissar R. (1991). ‘A Statistical-Dynamical Approach to Parameterize Subgrid-Scale Land-Surface Heterogeneity in Climate Models’. Surv. Geophys. 12: 155–178CrossRefGoogle Scholar
  5. Baldocchi D.D. (1997). ‘Flux Footprints within and over Forest Canopies’. Boundary-Layer Meteorol. 85: 273–292CrossRefGoogle Scholar
  6. Baldocchi D.D., Finnigan J.J., Wilson K., Paw U.K.T. and Falge E. (2000). ‘On Measuring Net Ecosystem Carbon Exchange over Tall Vegetation on Complex Terrain’. Boundary-Layer Meteorol. 96: 257–291CrossRefGoogle Scholar
  7. Baldocchi D.D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer C., Davis K., Fuentes J.D., Goldstein A., Katul G., Law B.E., Lee X., Malhi Y., Meyers T., Munger J.W., Oechel W., Pilegaard K., Schmid H.P., Valentini R., Verma S., Vesala T., Wilson K. and Wofsy S. (2001). ‘FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon dioxide, Water vapour and Energy Flux Densities’. Bull. Amer. Meteorol. Soc. 82: 2415–2435CrossRefGoogle Scholar
  8. Claussen M. (1990). ‘Area-Averaging of Surface Fluxes in a Neutrally Stratified, Horizontally Inhomogeneous Atmospheric Boundary Layer’. Atmos. Environ. 24A: 1349–1360Google Scholar
  9. Claussen M. (1991). ‘Estimation of Areally-Averaged Surface Fluxes’. Boundary-Layer Meteorol. 54: 387–410CrossRefGoogle Scholar
  10. Fiedler F. and Panofsky H.A. (1972). ‘The Geostrophic Drag Coefficient and the ‘Effective’ Roughness Length’. Quart. J. Roy. Meteorol. Soc. 98: 213–220CrossRefGoogle Scholar
  11. Finnigan J.J. (2000). ‘Turbulence in Plant Canopies’. Annu. Rev. Fluid Mech. 32: 519–571CrossRefGoogle Scholar
  12. Flesch T.K. and Wilson J.D. (1999). ‘Wind and Remnant Tree Sway in Forest Cutblocks. I. Measured Winds in Experimental Cutblocks’. Agric. For. Meteorol. 93: 229–242CrossRefGoogle Scholar
  13. Foken T. and Wichura B. (1996). ‘Tools for Quality Assessment of Surface-Based Flux Measurements’. Agric. For. Meteorol. 78: 83–105CrossRefGoogle Scholar
  14. Foken T. (2003). Angewandte Meteorologie, Mikrometeorologische Methoden. Springer, Berlin, New York, 289Google Scholar
  15. Foken T., Göckede M., Mauder M., Mahrt L., Amiro B.D. and Munger J.W. (2004). ‘Post-Field Data Quality Control’. In: Lee, X., Massman, W.J., and Law, B.E. (eds) Handbook of Micrometeorology: A guide for Surface Flux Measurements, pp 181–208. Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. Foken T. and Leclerc M.Y. (2004). ‘Methods and Limitations in Validation of Footprint Models’. Agric. For. Meteorol. 127: 223–234CrossRefGoogle Scholar
  17. Friedrichs K., Mölders N. and Tetzlaff G. (2000). ‘On the Influence of Surface Heterogeneity on the Bowen-ratio: A Theoretical Case Study’. Theor. Appl. Climatol. 65: 181–196CrossRefGoogle Scholar
  18. Garratt J.R. (1992). The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316Google Scholar
  19. Gerstberger P., Foken T. and Kalbitz K. (2004). ‘The Lehstenbach and Steinkreuz Catchments in NE Bavaria, Germany’. In: Matzner, E. (eds) Biogeochemistry of Forested Catchments in a Changing Environment, Ecological Studies, Vol 172, pp 15–44. Springer, BerlinGoogle Scholar
  20. Göckede M., Rebmann C. and Foken T. (2004). ‘A Combination of Quality Assessment Tools for Eddy Covariance Measurements with Footprint Modelling for the Characterisation of Complex Sites’. Agric. For. Meteorol. 127: 175–188CrossRefGoogle Scholar
  21. Goode K. and Belcher S.E. (1999). ‘On the Parameterisation of the Effective Roughness Length for Momentum Transfer over Heterogeneous Terrain’. Boundary-Layer Meteorol. 93: 133–154CrossRefGoogle Scholar
  22. Hasager C.B. and Jensen N.O. (1999). ‘Surface-Flux Aggregation in Heterogeneous Terrain’. Quart. J. Roy. Meteorol. Soc. 125: 2075–2102CrossRefGoogle Scholar
  23. Hasager C.B., Nielsen N.W., Soegaard H., Boegh E., Christensen J.H., Jensen N.O., Schultz Rasmussen M., Astrup P. and Dellwik E. (2002). SAT-MAP-CLIMATE Project results. Risö National Laboratory, Roskilde, 71Google Scholar
  24. Hasager C.B., Nielsen N.W., Jensen N.O., Boegh E., Christensen J.H., Dellwik E. and Soegaard H. (2003). ‘Effective Roughness Calculated from Satellite-Derived Land Cover Maps and Hedge-Information used in a Weather Forecasting Model’. Boundary-Layer Meteorol. 109: 227–254CrossRefGoogle Scholar
  25. Hsieh C.I., Siqueira M., Katul G. and Chu C.R. (2003). ‘Predicting scalar source–sink and flux distributions within a forest canopy using a 2-D Lagrangian stochastic dispersion model’. Boundary-Layer Meteorol 109: 113–138CrossRefGoogle Scholar
  26. Kaimal J.C. and Finnigan J.J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, 289Google Scholar
  27. Klaassen W. and Claussen M. (1995). ‘Landscape Variability and Surface Flux Parameterization in Climate Models’. Agric. For. Meteorol. 73: 181–188CrossRefGoogle Scholar
  28. Klaassen W., Moors E.J., Nieveen J.P. and Breugel P.B. (2002). ‘Increased Heat Fluxes near a Forest Edge’. Theor. Appl. Climatol. 72: 231–243CrossRefGoogle Scholar
  29. Kljun N., Rotach M.W. and Schmid H.P. (2002). ‘A Three-Dimensional Backward Lagrangian Footprint Model for a Wide Range of Boundary-Layer Stratifications’. Boundary-Layer Meteorol. 103: 205–226CrossRefGoogle Scholar
  30. Leclerc M.Y., Karipot A., Prabha T., Allwine G., Lamb B. and Gholz H.L. (2003). ‘Impact of Non-Local Advection on Flux Footprints over a Tall Forest Canopy: a Tracer Flux Experiment’. Agric. For. Meteorol. 115: 19–30CrossRefGoogle Scholar
  31. Lee X. (1998). ‘On Micrometeorological Observations of Surface-Air Exchange Over Tall Vegetation’. Agric. For. Meteorol. 91: 39–49CrossRefGoogle Scholar
  32. Lee X. (2003). ‘Fetch and Footprint of Turbulent Fluxes Over Vegetative Stands with Elevated Sources’. Boundary-Layer Meteorol. 107: 561–579CrossRefGoogle Scholar
  33. Liebethal C. and Foken T. (2003). ‘On the Significance of the Webb Correction to Fluxes’. Boundary-Layer Meteorol 109: 99–106CrossRefGoogle Scholar
  34. Mahrt L. (1987). ‘Grid-Averaged Surface Fluxes’. Mon. Wea. Rev. 115: 1550–1560CrossRefGoogle Scholar
  35. Mahrt L. and Sun J.L. (1995). ‘Dependence of Surface Exchange Coefficients on Averaging Scale and Grid Size’. Quart. J. Roy. Meteorol. Soc. 121: 1835–1852CrossRefGoogle Scholar
  36. Mahrt L. (1996). ‘The Bulk Aerodynamic Formulation over Heterogeneous Surfaces’. Boundary-Layer Meteorol. 89: 87–119CrossRefGoogle Scholar
  37. Mahrt L. (1998). ‘Flux Sampling Errors for Aircraft and Towers’. J. Atmos. Ocean. Technol. 15: 416–429CrossRefGoogle Scholar
  38. Marcolla B., Pitacco A. and Cescatti A. (2003). ‘Canopy Architecture and Turbulence Structure in a Coniferous Forest’. Boundary-Layer Meteorol. 108: 39–59CrossRefGoogle Scholar
  39. Markkanen T., Rannik Ü., Marcolla B., Cescatti A. and Vesala T. (2003). ‘Footprints and Fetches for Fluxes over Forest Canopies with Varying Structure and Density’. Boundary-Layer Meteorol. 106: 437–459CrossRefGoogle Scholar
  40. Mason P.J. (1988). ‘The Formation of Areally-Averaged Roughness Lengths’. Quart. J. Roy. Meteorol. Soc. 114: 399–420CrossRefGoogle Scholar
  41. Mölders N., Raabe A. and Tetzlaff G. (1996). ‘A Comparison of Two Strategies on Land Surface Heterogeneity used in a Mesoscale Beta Meteorological Model’. Tellus A 48: 733–749CrossRefGoogle Scholar
  42. Moore C.J. (1986). ‘Frequency Response Corrections for Eddy Correlation Systems’. Boundary-Layer Meteorol. 37: 17–35CrossRefGoogle Scholar
  43. Pyles R.D., Paw U.K.T. and Falk M. (2004). ‘Directional Wind Shear within an Old-Growth Temperate Rainforest: Observations and Model Results’. Agric. For. Meteorol. 125: 19–31CrossRefGoogle Scholar
  44. Rannik Ü., Aubinet M., Kurbanmuradov O., Sabelfeld K.K., Markkanen T. and Vesala T. (2000). ‘Footprint Analysis for Measurements over a Heterogeneous Forest’. Boundary-Layer Meteorol. 97: 137–166CrossRefGoogle Scholar
  45. Rannik Ü., Markkanen T., Raittila J., Hari P. and Vesala T. (2003). ‘Turbulence Statistics Inside and Over Forest: Influence on Footprint Prediction’. Boundary-Layer Meteorol. 109: 163–189CrossRefGoogle Scholar
  46. Rebmann C., Göckede M., Foken T., Aubinet M., Aurela M., Berbigier P., Bernhofer C., Buchmann N., Carrara A., Cescatti A., Ceulemans R., Clement R., Elbers J.A., Granier A., Grünwald T., Guyon D., Havránková K., Heinesch B., Knohl A., Laurila T., Longdoz B., Marcolla B., Markkanen T., Miglietta F., Moncrieff J.B., Montagnani L., Moors E., Nardino M., Ourcival J.-M., Rambal S., Rannik Ü., Rotenberg E., Sedlak P., Unterhuber G., Vesala T. and Yakir D. (2005). ‘Quality Analysis Applied on Eddy Covariance Measurements at Complex Forest Sites using Footprint Modelling’. Theor. Appl. Climatol. 80: 121–141CrossRefGoogle Scholar
  47. Reynolds A.M. (1998). ‘A Two-Dimensional Lagrangian Stochastic Dispersion Model for Convective Boundary Layers with Wind Shear’. Boundary-Layer Meteorol. 86: 345–352CrossRefGoogle Scholar
  48. Schmid H.P. and Oke T.R. (1988), ‘Estimating the Source Area of a Turbulent Flux Measurement over a Patchy Surface’. in 8th Symposium on Turbulence and Diffusion, Boston, MA, American Meteorological Society, pp. 123–126.Google Scholar
  49. Schmid H.P. and Oke T.R. (1990). ‘A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface Layer Over Patchy Terrain’. Quart. J. Roy. Meteorol. Soc. 116: 965–988CrossRefGoogle Scholar
  50. Schmid H.P. (1994). ‘Source Areas for Scalars and Scalar Fluxes’. Boundary-Layer Meteorol. 67: 293–318CrossRefGoogle Scholar
  51. Schmid H.P. and BÜnzli D. (1995). ‘The Influence of Surface Texture on the Effective Roughness Length’. Quart. J. Roy. Meteorol. Soc. 121: 1–21CrossRefGoogle Scholar
  52. Schmid H.P. (1997). ‘Experimental Design for Flux Measurements: Matching Scales of Observations and Fluxes’. Agric. For. Meteorol. 87: 179–200CrossRefGoogle Scholar
  53. Schmid H.P. (2002). ‘Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective’. Agric. For. Meteorol. 113: 159–183CrossRefGoogle Scholar
  54. Seth A., Giorgi F. and Dickinson R.E. (1994). ‘Simulating Fluxes from Heterogeneous Land Surfaces: Explicit Subgrid Method Employing the Biosphere-Atmosphere Transfer Scheme (BATS)’. J. Geophys. Res.-Atmos. 99: 18651–18667CrossRefGoogle Scholar
  55. Taylor P.A. (1987). ‘Comments and Further Analysis on Effective Roughness Lengths for use in Numerical Three-Dimensional Models’. Boundary-Layer Meteorol. 39: 403–418CrossRefGoogle Scholar
  56. Thomas, C., Ruppert, J., Lüers, J., Schröter, J., Mayer, J. C., and Bertolini, T.: 2004, Documentation of the WALDATEM-2003 Experiment. Universität Bayreuth, Abteilung Mikrometeorologie, Arbeitsergebnisse, Print ISSN 1614-8916, No. 24, 59 pp.Google Scholar
  57. Thomson D.J. (1987). ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’. J. Fluid Mech. 180: 529–556CrossRefGoogle Scholar
  58. Klaassen W., Moors E.J. and Breugel P.B. (1999). ‘Fetch Requirements near a Forest Edge’. Phys. Chem. Earth Pt. B 24: 125–131Google Scholar
  59. Webb E.K., Pearman G.I. and Leuning R. (1980). ‘Correction of Flux Measurements for Density Effects due to Heat and Water Vapour Transfer’. Quart. J. Roy. Meteorol. Soc. 106: 85–100CrossRefGoogle Scholar
  60. Wieringa J. (1986). ‘Roughness-Dependent Geographical Interpolation of Surface Wind Speed Averages’. Quart. J. Roy. Meteorol. Soc. 112: 867–889CrossRefGoogle Scholar
  61. Wilczak J.M., Oncley S.P. and Stage S.A. (2001). ‘Sonic Anemometer Tilt Correction Algorithms’. Boundary-Layer Meteorol. 99: 127–150CrossRefGoogle Scholar
  62. Wilson J.D., Legg B.J. and Thomson D.J. (1983). ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Variance’. Boundary-Layer Meteorol. 27: 163–169CrossRefGoogle Scholar
  63. Wilson J.D. and Sawford B.L. (1996). ‘Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere’. Boundary-Layer Meteorol. 78: 191–210CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mathias Göckede
    • 1
  • Tiina Markkanen
    • 2
  • Charlotte B. Hasager
    • 3
  • Thomas Foken
    • 1
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Wind Energy DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations