Boundary-Layer Meteorology

, Volume 118, Issue 3, pp 557–581

The Effect of the Sea-ice Zone on the Development of Boundary-layer Roll Clouds During Cold Air Outbreaks

  • A. Q. Liu
  • G. W. K. Moore
  • K. Tsuboki
  • I. A. Renfrew
Article

Abstract

High latitude air–sea interaction is an important component of the earth’s climate system and the exchanges of mass and energy over the sea-ice zone are complicated processes that, at present, are not well understood. In this paper, we perform a series of numerical experiments to examine the effect of sea-ice concentration on the development of high latitude boundary-layer roll clouds. The experiments are performed at sufficiently high spatial resolution to be able to resolve the individual convective roll clouds, and over a large enough domain to be able to examine the roll’s downstream development. Furthermore the high spatial resolution of the experiments allows for an explicit representation of heterogeneity within the sea-ice zone. The results show that the sea-ice zone has a significant impact on the atmospheric boundary-layer development, which can be seen in both the evolution of the cloud field and the development of heat and moisture transfer patterns. In particular, we find the air-sea exchanges of momentum, moisture and heat fluxes are modified by the presence of the roll vortices (typically a 10% difference in surface heat fluxes between updrafts and downdrafts) and by the concentration and spatial distribution of the sea-ice. This suggests that a more realistic representation of processes over the sea-ice zone is needed to properly calculate the air-sea energy and mass exchange budgets.

Keywords

Air–sea interaction Boundary layer Cold air outbreaks Numerical modelling Roll clouds Sea-ice zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M.A., Bhatt U.S., Walsh J.E., Timlin M.S., Miller J.S. and Scott J.D. (2004). ‘The Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter’. J. Climate 17: 890–905CrossRefGoogle Scholar
  2. Asai T. (1970). ‘Three Dimensional Features of Thermal Convection in a Plane Couette Flow’. J. Meteorol. Soc. Japan 48: 18–29Google Scholar
  3. Asuma Y., Kikuchi K. and Uyeda H. (1997). ‘Organizations and the Interior Characteristics of Winter Monsoon Clouds by Dual-Polarization Doppler Radar Observation in Hokuriku, Japan’. Atmos. Res. 43: 297–314CrossRefGoogle Scholar
  4. Braham R.R. and Kristovich D.A.R. (1996). ‘On Calculating the Buoyancy of Cores in a Convective Boundary Layer’. J. Atmos. Sci. 53: 654–658CrossRefGoogle Scholar
  5. Brummer B. (1996). Boundary-layer modification in wintertime cold-air outbreaks from the arctic sea ice. Boundary-Layer Meteorol. 80: 109–125CrossRefGoogle Scholar
  6. Brummer B. (1997). Boundary Layer Mass, Water and Heat Budgets in Wintertime Cold-air Outbreaks from the Arctic Sea Ice. Mon. Wea. Rev. 125: 1824–1837CrossRefGoogle Scholar
  7. Brummer B. (1999). Roll and Cell Convection in Wintertime Arctic Cold-air Outbreaks. J. Atmos. Sci. 56: 2613–2636CrossRefGoogle Scholar
  8. Brummer B. and Pohlmann S. (2000). Wintertime Roll and Cell Convection over Greenland and Barents Sea Regions: A Climatology. J. Geophys. Res. 105: 15559–15566CrossRefGoogle Scholar
  9. Brummer B. and Thiemann S. (2002). The Atmospheric Boundary Layer in an Arctic Wintertime On-ice Air Flow. Boundary-Layer Meteorol. 104: 53–72CrossRefGoogle Scholar
  10. Brummer B., Rump B. and Kruspe G. (1992). ‘A Cold Air Outbreak near Spitsbergen in Springtime – Boundary-Layer Modification and Cloud Development’. Boundary-Layer Meteorol. 61: 13–46CrossRefGoogle Scholar
  11. Brummer B., Busack B., Hoeber H. and Kruspe G. (1994). ‘Boundary-Layer Observations over Water and Artic Sea-Ice During on-Ice Air-Flow’. Boundary-Layer Meteorol. 68: 75–108CrossRefGoogle Scholar
  12. Bullock R.J., Voles R., Currie A., Griffiths H.D. and Brennan P.V. (1997). ‘Two-look Method for Correction of Roll Errors in Aircraft-Borne Interferometric SAR’. Electronics Lett. 33: 1581–1583CrossRefGoogle Scholar
  13. Clement J.L., Cooper L.W. and Grebmneier J.M. (2004). ‘Late Winter Water Column and Sea Ice Conditions in the Northern Bering Sea’. J. Geophys. Res. 109: C03022, doi:10.1029/2003JC002047CrossRefGoogle Scholar
  14. Cooper K.A., Hjelmfelt M.R., Derickson R.G., Kristovich D.A.R. and Laird N.F. (2000). ‘Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-effect Snow Event’. Mon. Wea. Rev 128: 3283–3295CrossRefGoogle Scholar
  15. Dare R.A. and Atkinson B.W. (1999). ‘Numerical Modelling of Atmospheric Response to Polynyas in the Southern Ocean Sea Ice Zone’. J. Geophys. Res. 104: 16691–16708CrossRefGoogle Scholar
  16. Dare R.A. and Atkinson B.W. (2000). ‘Atmospheric Response to Spatial Variations in Concentration and Size of Polynyas in the southern Ocean Sea-ice Zone’. Boundary-Layer Meteorol. 94: 65–88CrossRefGoogle Scholar
  17. Etling D. and Brown R.A. (1993). Roll Vortices in the Planetary Boundary-Layer - a Review. Boundary-Layer Meteorol. 65: 215–248CrossRefGoogle Scholar
  18. Grotzner A., Sausen R. and Claussen M. (1996). ‘The Impact of Sub-grid Scale Sea-ice inhomogeneities on the Performance of the Atmospheric General Circulation Model ECHAM3’. Clim. Dynamics 12: 477–496CrossRefGoogle Scholar
  19. Guest P.S., Glendening J.W. and Davidson K.L. (1995). ‘An Observational and Numerical Study of Wind Stress Variations within Marginal Ice Zones’. J. Geophys. Res. 100: 10887–10904CrossRefGoogle Scholar
  20. Hartmann J., Kottmeier C. and Raasch S. (1997). ‘Roll Vortices and Boundary-layer Development during a Cold Air Outbreak’. Boundary-Layer Meteorol. 84: 45–65CrossRefGoogle Scholar
  21. Haggerty J.A., Maslanik J.A., Curry J.A. (2003), ‘Heterogeneity of Sea Ice Surface Temperature at SHEBA from Aircraft Measurements’. J. Geophys. Res. 108, C10 8052, doi: 10.1029/2000JC000560.Google Scholar
  22. Inoue J., Ono J., Tachibana Y., Honda M., Iwamoto K., Fujiyoshi Y. and Takeuchi K. (2003). ‘Characteristics of Heat Transfer over the Ice Covered Sea of Okhotsk during Cold-air Outbreaks’. J. Meteorol Soc. Japan 81: 1057–1067CrossRefGoogle Scholar
  23. Khanna S. and Brasseur J.G. (1998). ‘Three-dimensional Buoyancy-and Shear-induced Local Structure of the Atmospheric Boundary Layer’. J. Atmos. Sci. 55: 710–743CrossRefGoogle Scholar
  24. Kondo J. (1975). ‘Air-sea bulk transfer coefficients in diabatic conditions’. Boundary-Layer Meteorol. 9: 91–112CrossRefGoogle Scholar
  25. Kristovich D.A.R., Young G.S., Verlinde J., Sousounis P.J., Mourad P., Lenschow D., Rauber R.M., Ramamurthy M.K., Jewett B.F., Beard K., Cutrim E., DeMott P.J., Eloranta E.W., Hjelmfelt M.R., Kreidenweis S.M., Martin J., Moore J., Ochs H.T., Rogers D.C., Scala J., Tripoli G. and Young J. (2000). ‘The Lake-Induced Convection Experiment and the Snowband Dynamics Project’. Bull. Amer. Meteorol. Soc. 81: 519–542CrossRefGoogle Scholar
  26. Levy G. (2001). ‘Boundary Layer Roll Statistics from SAR’. Geophys. Res. Lett. 28: 1993–1995CrossRefGoogle Scholar
  27. Liu A.Q., Moore G.W.K., Tsuboki K. and Renfrew I.A. (2004). ‘A High-resolution Simulation of Convective Roll Clouds during a Cold-air Outbreak’. Geophys. Res. Lett. 31: L03101, dio:10.1029/2003GL018530CrossRefGoogle Scholar
  28. Marshall J., Dobson F., Moore K., Rhines P., Visbeck M., d’Asaro E., Bumke K., Chang S., Davis R., Fischer K., Garwood R., Guest P., Harcourt R., Herbaut C., Holt T., Lazier J., Legg S., Mcwilliams J., Pickart R., Prater M., Renfrew I., Schott F., Send U., Smethie W. and Grp L.S. (1998). ‘The Labrador Sea deep Convection Experiment’. Bull. Amer. Meteorol. Soc. 79: 2033–2058CrossRefGoogle Scholar
  29. Mason P.J. and Sykes R.I. (1982). ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary-Layer’. Quart. J. Roy Meteorol. Soc. 108: 801–823CrossRefGoogle Scholar
  30. Moeng C.H. and Sullivan P.P. (1994). ‘A Comparison of Shear-Driven and Buoyancy-Driven Planetary Boundary-Layer Flows’. J. Atmos. Sci. 51: 999–1022CrossRefGoogle Scholar
  31. Moore G.W.K., Reader M.C., York J. and Sathiyamoorthy S. (1996). ‘Polar Lows in the Labrador Sea–A Case Study’. Tellus A 48: 17–40CrossRefGoogle Scholar
  32. Mourad P.D. and Walter B.A. (1996a). ‘Viewing a Cold Air Outbreak using Satellite-based Synthetic Aperture Radar and Advanced Very High Resolution Radiometer Imagery’. J. Geophys. Res. 101: 16391–16400CrossRefGoogle Scholar
  33. Mourad P.D. and Walter B.A. (1996b). ‘Analysis of Mesoscale Linear Features Observed in the Artic Atmospheric Boundary Layer’. Mon. Wea. Rev. 124: 1924–1940CrossRefGoogle Scholar
  34. Muller G., Brummer B. and Alpers W. (1999). ‘Roll-Convection Within an Arctic Cold-air Outbreak: Interpretation of In situ Aircraft Measurements and Spaceborne SAR Imagery by a Three-dimensional Atmospheric Model’. Mon. Wea. Rev. 127: 363–380CrossRefGoogle Scholar
  35. Olsson P.Q. and Harrington J.Y. (2000). ‘Dynamics and Energetics of the Cloudy Boundary Layer in Simulations of Off-ice Flow in the Marginal Ice Zone’. J. Geophys. Res. 105: 11889–11899CrossRefGoogle Scholar
  36. Pagowski M. and Moore G.W.K. (2001). ‘A Numerical Study of an Extreme Cold-air Outbreak over the Labrador Sea: Sea Ice, Air–sea Interaction and Development of Polar Lows’. Mon. Wea. Rev. 129: 47–72CrossRefGoogle Scholar
  37. Parkinson C.L., Rind D., Healy R.J. and Martinson D.G. (2001). ‘The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM’. J. Climate 14: 2606–2623CrossRefGoogle Scholar
  38. Raasch S. (1990). ‘Numerical-Simulation of the Development of the Convective Boundary-Layer During a Cold Air Outbreak’. Boundary-Layer Meteorol. 52: 349–375CrossRefGoogle Scholar
  39. Rasmussen E.A. and Turner J. (2003). Polar Lows: Mesoscale Weather Systems in the Polar Regions,1st ed. Cambridge University Press, Cambridge, U.K., 645Google Scholar
  40. Renfrew I.A. and Moore G.W.K. (1999). ‘An Extreme cold-Air Outbreak over the Labrador Sea: Roll Vortices and Air–sea Interaction’. Mon. Wea. Rev. 127: 2379–2394CrossRefGoogle Scholar
  41. Renfrew I.A. and King J.C. (2000). ‘A Simple Model of the Convective Internal Boundary Layer and its Application to Surface Heat Flux Estimates within Polynyas’. Boundary-Layer Meteorol. 94: 335–356CrossRefGoogle Scholar
  42. Renfrew I.A., Moore G.W.K., Holt T.R., Chang S.W. and Guest P. (1999). ‘Mesoscale Forecasting during a Field Program: Meteorological Support of the Labrador Sea Deep Convection Experiment’. Bull. Amer. Meteorol soc. 80: 605–620CrossRefGoogle Scholar
  43. Rind D., Healy R., Parkinson C. and Martinson D. (1997). ‘The role of sea ice in 2xCO(2) Climate Model Sensitivity. 2. Hemispheric Dependencies’. Geophys. Res. Lett. 24: 1491–1494CrossRefGoogle Scholar
  44. Schlunzen K.H. and Katzfey J. (2003). ‘Relevance of Sub-grid-Scale Land-use Effects for Mesoscale Models’. Tellus A 55: 232–246CrossRefGoogle Scholar
  45. Semmler T., Jacob D., Schlunzen K.H. and Podzun R. (2004). ‘Influence of Sea Ice Treatment in a Regional Climate Model on boundary Layer Values in the Fram Strait Region’. Mon. Wea. Rev. 132: 985–999CrossRefGoogle Scholar
  46. Sykes R.I. and Henn D.S. (1988). ‘On the Numerical Computation of Two-Dimensional Convective Flow’. J. Atmos. Sci. 45: 1961–1964CrossRefGoogle Scholar
  47. Sykes R.I. and Henn D.S. (1989). ‘Large-Eddy Simulation of Turbulent Sheared Convection. J. Atmos. Sci. 46: 1106–1118CrossRefGoogle Scholar
  48. Tsuboki K., Sakakibara, A. 2002, ‘Large-scale Parallel Computing of Cloud Resolving Storm Simulator’, in P. Z. Hans, K. Joe, M. Sato, Y. Seo, and M. Schimasaki (Eds.), High performance computing, 103 ed. Springer, 564 pp.Google Scholar
  49. Tusboki K., Fujiyoshi Y. and Wakahama G. (1989). ‘Structure of Land Breeze and Snowfall Enhancement at the Leading Edge’. J. Meteorol. Soc. Japan 67: 757–770Google Scholar
  50. Venkatram A. (1977). ‘A Model of Internal Boundary-Layer Development’. Boundary-Layer Meteorol. 11: 419–437CrossRefGoogle Scholar
  51. Vihma T. and Brummer B. (2002). ‘Observations and Modeling of the On-ice and Off-ice Air flow over the Northern Baltic Sea’. Boundary-Layer Meteorol. 103: 1–27CrossRefGoogle Scholar
  52. Vihma T., Hartmann J. and Lupkes C. (2003). ‘A Case Study of an On-ice Air Flow over the Artic Marginal Sea-ice Zone’. Boundary-Layer Meteorol. 107: 189–217CrossRefGoogle Scholar
  53. Walter B.A. (1980). ‘Wintertime Observations of Roll Clouds over the Bering Sea’. Mon. Wea. Rev. 108: 2024–2031CrossRefGoogle Scholar
  54. Weckwerth T.M., Wilson J.W., Wakimoto R.M. and Crook N.A. (1997). ‘Horizontal Convective Rolls: Determining the Environmental Conditions Supporting their Existence and Characteristics’. Mon. Wea. Rev. 125: 505–526CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Q. Liu
    • 1
  • G. W. K. Moore
    • 1
  • K. Tsuboki
    • 2
  • I. A. Renfrew
    • 3
  1. 1.Department of physicsUniversity of TorontoTorontoCanada
  2. 2.Nagoya UniversityNagoyaJapan
  3. 3.University of East AngliaNorwichU.K.

Personalised recommendations