Boundary-Layer Meteorology

, Volume 118, Issue 1, pp 151–168 | Cite as

Large-Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulent Organized Structures

  • Manabu Kanda


Turbulent organized structures (TOS) above building arrays were investigated using a large-eddy simulation (LES) model for a city (LES-CITY). Square and staggered building arrays produced contrasting behaviour in terms of turbulence that roughly corresponded to the conventional classification of ‘D-type’ and ‘K-type’ roughness, respectively: (1) The drag coefficients (referred to the building height) for staggered arrays were sensitive to building area density, but those for square arrays were not. (2) The relative contributions of ejections to sweeps (S2/S4) at the building height for square arrays were sensitive to building area density and nearly equalled or exceeded 1.0 (ejection dominant), but those for staggered arrays were insensitive to building area density and were mostly below 1.0 (sweep dominant). (3) Streaky patterns of longitudinal low speed regions (i.e., low speed streaks) existed in all flows regardless of array type. Height variations of the buildings in the square array drastically increased the drag coefficient and modified the turbulent flow structures. The mechanism of D-type and K-type urban-like roughness flows and the difference from vegetation flows are discussed. Although urban-like roughness flows exhibited mixed properties of mixing layers and flat-wall boundary layers as far as S2/S4 was concerned, the turbulent organized structures of urban-like roughness flows resembled those of flat-wall boundary layers.


Building array D-type and K-type roughness LES-CITY Low speed streaks Sweep and ejection Turbulent organized structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R.J., Meinhart, C.D., Tomkins, C.D. 2000‘Vortex Organization in the Outer Region of the Turbulent Boundary Layer’J. Fluid Mech.422154CrossRefGoogle Scholar
  2. Antonia, R.A., Djenidi, L. 1997‘Reynolds Stress Producing Motions in Smooth and Rough Wall Boundary Layers’Panton, R.L. eds. Self-Sustaining Mechanisms of Wall TurbulenceComputational Mechanics PublicationsSouthampton181199Advances in Fluid Mechanics 15Google Scholar
  3. Bandyopadhyay, P.R. 1987‘Rough-wall Turbulent Boundary Layers in the Transition Regime’J Fluid Mech.180231266Google Scholar
  4. Cheng, H., Castro, I.P. 2002‘Near Wall Flow over Urban-Like Roughness’Boundary-Layer Meteorol.104229259CrossRefGoogle Scholar
  5. Deardorff, J.W. 1980‘Stratocumulus-Topped Mixed Layers Derived from a Three-dimensional Model’Boundary-Layer Meteorol.18495527CrossRefGoogle Scholar
  6. Djenidi, R., Elavarasan, R., Antonia, R.A. 1999‘The Turbulent Boundary Layer over Transverse Square Cavities’J. Fluid Mech.395271294CrossRefGoogle Scholar
  7. Feigenwinter, C., Vogt, R., and Parlow, E.: 1999, ‘Analysis of Organized Structure in Urban Turbulence’, Biometeorol. Urban Climatol. turn Millen. 565–568.Google Scholar
  8. Finnigan, J.J., Shaw, R.H. 2000‘A Wind-Tunnel Study of Airflow in Waving Wheat: An EOF Analysis of the Structure of the Large-Eddy Motion’Boundary-Layer Meteorol.96211255CrossRefGoogle Scholar
  9. Gao, W., Shaw, R.H., Paw, U.K.T. 1989‘Observation of Organized Structure in Turbulent Flow Within and Above a Forest Canopy’Boundary-Layer Meteorol.47349377CrossRefGoogle Scholar
  10. Ho, C.-M., Huerre, P. 1982‘Perturbed Free Shear Layers’Annu. Rev. Fluid. Mech.16365424Google Scholar
  11. Hommema, S.E., Adrian, R.J. 2003‘Packet Structure of Surface Eddies in the Atmospheric Boundary Layer’Boundary-Layer Meteorol.106147170CrossRefGoogle Scholar
  12. Iyengar, A.K.S., Farell, C. 2001‘Experimental Issues in Atmospheric Boundary Layer Simulations: Roughness Length and Integral Length Scale Determination’J. Wind. Eng. Ind. Aerodyn.8910591080CrossRefGoogle Scholar
  13. Jimenez, J. 2004‘Turbulent Flows over Rough Walls’Annu. Rev. Fluid. Mech.36173196CrossRefGoogle Scholar
  14. Kanda, M., Hino, M. 1994‘Organized Structures in Developing Turbulent Flow Within and Above a Plant Canopy, Using a Large Eddy Simulation’Boundary-Layer Meteorol.68237257CrossRefGoogle Scholar
  15. Kanda, M., Moriwaki, R., Kasamatsu, F. 2004‘Large Eddy Simulation of Turbulent Organized Structure Within and Above Explicitly Resolved Cube Arrays’Boundary-Layer Meteorol.112343368CrossRefGoogle Scholar
  16. Kastner-Klein, P., Rotach, M.W. 2004‘Mean Flow and Turbulence Characteristics in an Urban Roughness Sublayer’Boundary-Layer Meteorol.1115584CrossRefGoogle Scholar
  17. Katul, G., Hsieh, C.-I., Kuhn, G., Ellsworth, D. 1997‘Turbulent Eddy Motion at the Forest-Atmosphere Interface’J. Geophys. Res.1021340913421Google Scholar
  18. Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W. 1967‘The Structure of Turbulent Boundary Layers’J. Fluid Mech.30741773Google Scholar
  19. Krogstad, P., Antonia, R.A., Browne, L.W.B. 1992‘Comparison Between Rough- and Smooth-wall Turbulent Boundary Layers’J. Fluid Mech.245599617Google Scholar
  20. Louka, P., Belcher, S.E., Harrison, R.G. 1998‘Modified Street Canyon Flow’J. Wind Eng. Ind. Aerodyn.74–7648593Google Scholar
  21. Lu, S.S., Willmarth, W.W. 1973‘Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer’J. Fluid Mech.60481571Google Scholar
  22. Macdonald, R. W., Hall, D. J., Walker, S., and Spanton, A. M.: 1998, ‘Wind Tunnel Measurements of Windspeed Within Simulated Urban Arrays’, BRE Client Report CR 243/98, 62 pp.Google Scholar
  23. McNaughton, K.G., Brunet, Y. 2002‘Townsend’s Hypothesis, Coherent Structures and Monin-Obukhov Similarity’Boundary-Layer Meteorol.102161175CrossRefGoogle Scholar
  24. Moriwaki, R. 2004Fluxes of Energy and CO2 between Urban Canopy and AtmosphereTokyo Institute of TechnologyTokyo, Japan149Ph.D. DissertationGoogle Scholar
  25. Nakagawa, H., Nezu, I. 1977‘Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open-channel Flow’J. Fluid. Mech.8099128Google Scholar
  26. Oikawa, S., Meng, Y. 1995‘Turbulence Characteristics and Organized Motion in a Suburban Roughness Sublayer’Boundary-Layer Meteorol.74289312CrossRefGoogle Scholar
  27. Osaka, H. and Mochizuki, S.: 1988, ‘Coherent Structure of a D-type Rough Wall Boundary Layer’, In M. Hirata and N. Kasagi (eds.), Transport Phenomena in Turbulent Flows: Theory, Experiment and Numerical Simulation, Hemisphere, 199–211.Google Scholar
  28. Perry, A.E., Schofield, W.H., Joubert, P.N. 1969‘Rough Wall Turbulent Boundary Layers’J. Fluid Mech.37383413Google Scholar
  29. Raupach, M.R. 1981‘Conditional Statistics of Reynolds Stress in Rough-wall and Smooth-Wall Turbulent Boundary Layers’J. Fluid Mech.108363382Google Scholar
  30. Raupach, M.R., Antonia, R.A., Rajagopalan, S. 1991‘Rough-Wall Turbulent Boundary Layers’Appl. Mech. Rev.44125Google Scholar
  31. Raupach, M.R., Finnigan, J.J., Brunet, Y. 1996‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-layer Analogy’Boundary-Layer Meteorol.78351382CrossRefGoogle Scholar
  32. Robinson, S.K. 1991‘Coherent Motions in the Turbulent Boundary Layer’Annu. Rev. Fluid Mech.23601639CrossRefGoogle Scholar
  33. Rotach, M.W. 1993‘Turbulence Close to a Rough Urban Surface Part I Reynolds Stress’Boundary-Layer Meteorol.65128CrossRefGoogle Scholar
  34. Schoppa, W., Hussain, F. 2002‘Coherent Structure Generation in Near-wall Turbulence’J. Fluid Mech.45357108CrossRefGoogle Scholar
  35. Shaw, R. H., Tavangar, J., Ward, D. P. 1983‘Structure of the Reynolds Stress in a Canopy Layer’J. Clim. Appl. Meteorol.2219221931CrossRefGoogle Scholar
  36. Townsend, A. A. 1976The Structure of Turbulent Shear FlowCambridge University PressU.K429Google Scholar
  37. Uehara, K., Murakami, S., Oikawa, S., Wakamatsu, S. 2000‘Wind Tunnel Experiments on How Thermal Stratification Affects Flow in and Above Urban Street Canyons’Atmos. Environ.3415531562CrossRefGoogle Scholar
  38. Watanabe, T. 2004‘Large-Eddy Simulation of Coherent Turbulence Structures Associated with Scalar Ramps over Plant Canopies’Boundary-Layer Meteorol.112307341CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of International Development EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations