Boundary-Layer Meteorology

, Volume 118, Issue 1, pp 83–107 | Cite as

On the Kinetic Energy Budget of the Unstable Atmospheric Surface Layer

  • K. G. Mcnaughton


We present a new account of the kinetic energy budget within an unstable atmospheric surface layer (ASL) beneath a convective outer layer. It is based on the structural model of turbulence introduced by McNaughton (Boundary-Layer Meteorology, 112: 199–221, 2004). In this model the turbulence is described as a self-organizing system with a highly organized structure that resists change by instability. This system is driven from above, with both the mean motion and the large-scale convective motions of the outer layer creating shear across the surface layer. The outer convective motions thus modulate the turbulence processes in the surface layer, causing variable downwards fluxes of momentum and kinetic energy. The variable components of the momentum flux sum to zero, but the associated energy divergence is cumulative, increasing both the average kinetic energy of the turbulence in the surface layer and the rate at which that energy is dissipated. The tendency of buoyancy to preferentially enhance the vertical motions is opposed by pressure reaction forces, so pressure production, which is the work done against these reaction forces, exactly equals buoyant production of kinetic energy. The pressure potential energy that is produced is then redistributed throughout the layer through many conversions, back and forth, between pressure potential and kinetic energy with zero sums. These exchanges generally increase the kinetic energy of the turbulence, the rate at which turbulence transfers momentum and the rate at which it dissipates energy, but does not alter its overall structure. In this model the velocity scale for turbulent transport processes in the surface layer is (kzɛ)1/3 rather than the friction velocity, u*. Here k is the von Kármán constant, z is observation height, ɛ is the dissipation rate. The model agrees very well with published experimental results, and provides the foundation for the new similarity model of the unstable ASL, replacing the older Monin–Obukhov similarity theory, whose assumptions are no longer tenable.


Turbulence Convective boundary layer Fractal Inactive motion Monin–Obukhov similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, J. D., Parlange, M. B., Kiely, G., Eichinger, W. E. 1997‘The Average Dissipation rate of Turbulent Kinetic Energy in the Neutral and Unstable Atmospheric Surface Layer’J. Geophys. Res.1021342313432CrossRefGoogle Scholar
  2. Boppe, R. S., Neu, W. L., Shuai, H. 1999‘Large-scale Motions in the Marine Atmospheric Surface Layer’Boundary-Layer Meteorol.92165183CrossRefGoogle Scholar
  3. Bradley, E. F., Antonia, R. A., Chambers, A. J. 1981‘Turbulence Reynolds Number and the Turbulent Kinetic Energy Balance in the Atmospheric Surface Layer’Boundary-Layer Meteorol.21183197CrossRefGoogle Scholar
  4. Bradshaw, P. 1967“Inactive’ Motion and Pressure Fluctuations in Turbulent Boundary Layers’J. Fluid Mech.30241258Google Scholar
  5. Bradshaw, P., Huang, G. P. 1995‘The Law of the Wall in Turbulent Flow’Proc. Roy. Soc. London A451165188Google Scholar
  6. Corrsin, S. 1974‘Limitations of Gradient Transport Models in Random Walks and in Turbulence’Adv. Geophys.18A2560Google Scholar
  7. Deardorff, J. W. 1970‘Preliminary Results from Numerical Integrations of the Unstable Boundary Layer’J. Atmos. Sci.2712091213Google Scholar
  8. Bruin, H. A. R., Bink, N. J. 1994‘The Use of σT as a Temperature Scale in the Atmospheric Surface Layer’Boundary-Layer Meteorol.707993CrossRefGoogle Scholar
  9. Eckelmann, H. 1974‘The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow’J. Fluid Mech.65439459Google Scholar
  10. Edson, J. B., Fairall, C. W. 1998‘Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets’J. Atmos. Sci.5523112328CrossRefGoogle Scholar
  11. Etling, D., Brown, R. A. 1993‘Roll Vortices in the Planetary Boundary Layer: A Review’Boundary-Layer Meteorol.65215248CrossRefGoogle Scholar
  12. Finnigan, J. J., Einaudi, F., Fua, D. 1984‘The Interaction between an Internal Gravity Wave and Turbulence in the Stably Stratified Nocturnal Boundary Layer’J. Atmos. Sci.4124092436CrossRefGoogle Scholar
  13. Högström, U. 1990‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity formulation for Near Neutral Conditions’J. Atmos. Sci.4719491972CrossRefGoogle Scholar
  14. Högström, U. 1996‘Review of Some Basic Characteristics of the Atmospheric Surface Layer’Boundary-Layer Meteorol.78215246CrossRefGoogle Scholar
  15. Johansson, C., Smedman, A., Högström, U., Brasseur, J. G., Khanna, S. 2001‘Critical Test of the Validity of Monin–Obukhov Similarity during Convective Conditions’J. Atmos. Sci.5815491566CrossRefGoogle Scholar
  16. Kader, B. A., Yaglom, A. M. 1990‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’J. Fluid Mech.212637662Google Scholar
  17. Kai, K.: 1982, ‘Statistical Characteristics of Turbulence and the Budget of Turbulent Energy in the Surface Boundary Layer’, Environmental Research Centre Paper No. 1, University of Tsukuba.Google Scholar
  18. Kaimal, J. C. 1978‘Horizontal Velocity Spectra in an Unstable Surface Layer’J. Atmos. Sci.351824CrossRefGoogle Scholar
  19. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., Coté, O. R. 1972‘Spectral Characteristics of Surface-layer Turbulence’Quart. J. Roy. Meteorol. Soc.98563589CrossRefGoogle Scholar
  20. Khanna, S., Brasseur, J. G. 1997‘Analysis of Monin–Obukhov Similarity from Large-eddy Simulation’J. Fluid Mech.345251286CrossRefGoogle Scholar
  21. Lumley, J. L. 1967‘Similarity and the Turbulent Energy Spectrum’Phys. Fluids10855858Google Scholar
  22. Maciejewski, P. K., Moffat, R. J. 1992‘Heat Transfer with Very High Free-stream Turbulence: Part II-analysis of Results’ASME, Trans.114834839Google Scholar
  23. McNaughton, K. G. 2004a‘Attached Eddies and Production Spectra in the Atmospheric Logarithmic Layer’Boundary-Layer Meteorol.111118CrossRefGoogle Scholar
  24. McNaughton, K. G. 2004b‘Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer’Boundary-Layer Meteorol.112119221CrossRefGoogle Scholar
  25. McNaughton, K. G., Laubach, J. 2000‘Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion’Boundary-Layer Meteorol.96143185CrossRefGoogle Scholar
  26. McNaughton, K. G., Brunet, Y. 2002‘Townsend’s Hypothesis, Coherent Structures and Monin–Obukhov Similarity’Boundary-Layer Meteorol.102161175CrossRefGoogle Scholar
  27. Metzger, M. M., Klewicki, J. C. 2001‘A Comparative Study of Near-wall Turbulence in High and Low Reynolds Number Boundary Layers’Phys. Fluids13692701Google Scholar
  28. Moss, R. W., Oldfield, M. L. G. 1996‘Effect of Free-stream Turbulence on Flat-plate Heat Flux Signals: Spectra and Eddy Transport Velocities’ASME J. Turbomachinery118461467Google Scholar
  29. Panofsky, H. A., Tennekes, H., Lenschow, D. H., Wyngaard, J. C. 1977‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’Boundary-Layer Meteorol.11355361CrossRefGoogle Scholar
  30. Priestley, C. H. B. 1955‘Free and Forced Convection in the Atmosphere near the Ground’Quart. J. Roy. Meteorol.81139143Google Scholar
  31. Sadr, R., Klewicki, J. C. 2000‘Surface Shear Stress Measurement System for Boundary Layer Flow over a Salt Playa’Meas. Sci. Technol.1114031413CrossRefGoogle Scholar
  32. Sorbjan, Z. 1989Structure of the Atmospheric Boundary layerPrentice HallEnglewood Cliffs317Google Scholar
  33. Theodorsen, T.: 1952, ‘Mechanism of Turbulence’, Proceedings of the Second Midwestern Conference on Fluid Mechanics, Columbus, Ohio, pp. 1–18. Ohio State University. [Reprinted in: E. H. Dowell (ed.), 1992. A Modern View of Theodore Theodorsen. American Institute of Aeronautics and Astronautics, Washington DC, pp.332–347.]Google Scholar
  34. Thole, K. A., Bogard, D. G. 1995‘Enhanced Heat Transfer and Shear Stress due to High Free-stream Turbulence’ASME J. Turbomachinery117418424Google Scholar
  35. Townsend, A. A. 1961‘Equilibrium Layers and Wall Turbulence’J. Fluid Mech.1197120Google Scholar
  36. Wyngaard, J. C. 1992‘Atmospheric Turbulence’Ann. Rev. Fluid Mech.24205233CrossRefGoogle Scholar
  37. Wyngaard, J. C., Coté, O. R. 1971‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’J. Atmos. Sci.28190201Google Scholar
  38. Wyngaard, J. C., Coté, O. R., Izumi, Y. 1971‘Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux’J. Atmos. Sci.2811711182Google Scholar
  39. Wyngaard, J. C., Coté, O. R. 1972‘Cospectral Similarity in the Atmospheric Surface Layer’Quart. J. Roy. Meteorol.98590603Google Scholar
  40. Zhou, J., Adrian, R. J., Balachandar, S., Kendall, T. M. 1999‘Mechanisms for Generating Coherent Packets of Hairpin Vortices in Hannel Flow’J. Fluid Mech.387353396CrossRefGoogle Scholar
  41. Zilitinkevich, S. 1994‘A Generalized Scaling for Convective Shear Flows’Boundary-Layer Meteorol.705178CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of GeoSciencesUniversity of EdinburghScotland

Personalised recommendations