Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 305–323 | Cite as

Modelling the One-Dimensional Stable Boundary Layer with an E Turbulence Closure Scheme

  • Wensong Weng
  • Peter A. Taylor


The atmospheric boundary layer (ABL) model of Weng and Taylor with E−ℓ turbulence closure is applied to simulate the one-dimensional stably stratified ABL. The model has been run for nine hours from specified initial wind, potential temperature and turbulent kinetic energy profiles, and with a specified cooling rate applied at the surface. Different runs are conducted for different cooling rates, geostrophic winds and surface roughnesses. The results are discussed and compared with other models, large-eddy simulations and published field data.


Boundary-layer height Inertial oscillation Quasi-steady state Stable boundary layer Turbulence length scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André J. C. and Mahrt L. (1982). The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling. J. Atmos. Sci. 39: 864–878CrossRefGoogle Scholar
  2. Apsley D. D. and Castro I. P. (1997). A Limited-Length Scale K−ε Model for the Neutral and Stably-Stratified Atmospheric Boundary Layer. Boundary-Layer Meteorol. 83: 75–98CrossRefGoogle Scholar
  3. Brown A. R., Derbyshire S. H. and Mason P. J. (1994). Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model. Quart. J. Roy. Meteorol. Soc. 120: 1485–1512CrossRefGoogle Scholar
  4. Caughey S. J., Wyngaard J. C. and Kaimal J. C. (1979). Turbulence in the Evolving Stable Boundary Layer. J. Atmos. Sci. 36: 1041–1052Google Scholar
  5. Cuxart, J., Holtslag, A. A. M., Bazile, E., Beare. R. J., Beljaars, A., Cheng, A., Conangle, L., Ek, M., Fredman, F. Ramdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G. -J., Svensson, G. Taylor, P. A., Wunsch, S., Weng, W. and Xu, K.-M.: 2005, ‘Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer’, this issueGoogle Scholar
  6. Derbyshire S. H. (1990). Nieuwstadt’s Stable Booundary Layer Revisited. Quart. J. Roy. Meteorol. Soc. 116: 127–158CrossRefGoogle Scholar
  7. Delage Y. (1974). A Numerical Study of the Nocturnal Atmospheric Boundary Layer. Quart. J. Roy. Meteorol. Soc. 100: 251–265CrossRefGoogle Scholar
  8. Detering H. W. and Etling D. (1985). Application of the E−ε Turbulence Model to the Atmospheric Boundary Layer. Boundary-Layer Meteorol. 33: 113–133CrossRefGoogle Scholar
  9. Freedman F. R. and Jacobson M. Z. (2003). Modification of the Standard ε Equation for the Stable ABL through Enforced Consistency with Monin-Obukhov Similarity Theory. Boundary-Layer Meteorol. 106: 384–410CrossRefGoogle Scholar
  10. Garratt J. R. (1982). Observations in the Nocturnal Boundary Layer. Boundary-Layer Meteorol. 22: 21–48CrossRefGoogle Scholar
  11. Kantha L. H. and Clayson C. A. (2000). Small Scale Processes in Geophysical Fluid Flow. Academic Press, San Diego, 888Google Scholar
  12. Karpik S. R. (1988). An Improved Method for Integrating the Mixed Spectral Finite Difference (MSFD) Model Equations. Boundary-Layer Meteorol. 43: 273–286CrossRefGoogle Scholar
  13. Kosović B. and Curry J. A. (2000). A Large-Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer. J. Atmos. Sci. 57: 1052–1068CrossRefGoogle Scholar
  14. Lenschow D. H., Li X. S., Zhu C. J. and Stankov B. B. (1988). The Stably Stratified Boundary-Layer over the Great Plains: 1. Mean and Turbulence Structure. Boundary-Layer Meteorol. 42: 95–121CrossRefGoogle Scholar
  15. Mason P. J. and King J. C. (1984). Atmospheric Flow over a Succesion of nearly Two-Dimensional Ridges and Valleys. Quart. J. Roy. Meteorol. Soc. 110: 821–845CrossRefGoogle Scholar
  16. Nieuwstadt F. T. M. (1984). The Turbulent Structure of the Stable, Nocturnal Boundary Layer. J. Atmos. Sci. 41: 2202–2216CrossRefGoogle Scholar
  17. Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.), Proceedings of the IMA Conference on Turbulence and Diffusion in the Stable Environment. Cambridge, 1983, Clarendon Press, pp. 149–179Google Scholar
  18. Pasquill, F. and Smith, F. B.: 1983, Atmospheric Diffusion, Ellis Horwood, 3rd edn, 437 ppGoogle Scholar
  19. Weng W. and Taylor P. A. (2003). On Modelling the One-Dimensional Atmospheric Bounday-Layer. Boundary-Layer Meteorol. 107: 371–400CrossRefGoogle Scholar
  20. Xu D. and Taylor P. A. (1997). An E−ε−ℓ Turbulence Closure for Planetary Boundary-Layer Models: The Neutrally Stratified Case. Boundary-Layer Meteorol. 84: 247–266CrossRefGoogle Scholar
  21. Zilitinkevich S. S. (1972). On the Determination of the Height of the Ekman Boudnary Layer. Boundary-Layer Meteorol. 3: 141–145CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Earth and Space Science and EngineeringYork UniversityNorth YorkCanada

Personalised recommendations