Boundary-Layer Meteorology

, Volume 116, Issue 3, pp 395–421 | Cite as

Development of a Multi-Layer Urban Canopy Model for the Analysis of Energy Consumption in a Big City: Structure of the Urban Canopy Model and its Basic Performance

  • Hiroaki Kondo
  • Yutaka Genchi
  • Yukihiro Kikegawa
  • Yukitaka Ohashi
  • Hiroshi Yoshikado
  • Hiroshi Komiyama


A multilayer one-dimensional canopy model was developed to analyze the relationship between urban warming and the increase in energy consumption in a big city. The canopy model, which consists of one-dimensional diffusion equations with a drag force, has three major parameters: building width, distance between buildings, and vertical floor density distribution, which is the distribution of a ratio of the number of the buildings that are taller than some level to all the buildings in the area under consideration. In addition, a simplified radiative process in the canopy is introduced. Both the drag force of the buildings and the radiative process depend on the floor density distribution. The thermal characteristics of an urban canopy including the effects of anthropogenic heat are very complicated. Therefore, the focus of this research is mainly on the basic performance of an urban canopy without anthropogenic heat. First, the basic thermal characteristics of the urban canopy alone were investigated. The canopy model was then connected with a three-dimensional mesoscale meteorological model, and on-line calculations were performed for 10 and 11 August, 2002 in Tokyo, Japan. The temperature near the ground surface at the bottom of the canopy was considerably improved by the calculation with the canopy model. However, a small difference remained between the calculation and the observation for minimum temperature. Deceleration of the wind was well reproduced for the velocity at the top of the building by the calculation with the canopy model, in which the floor density distribution was considered.


Drag force Multi-layer urban canopy model Radiation in the urban canopy Urban heat island 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aida, M. 1982‘Urban Albedo as a Function of the Urban Structure – A Model Experiment’Boundary-Layer Meteorol.23405413CrossRefGoogle Scholar
  2. Aida, M., Gotoh, K. 1982‘Urban Albedo as a Function of the Urban Structure – A Two-dimensional Numerical Simulation’Boundary-Layer Meteorol23415424CrossRefGoogle Scholar
  3. Akbari, H., Rosenfeld, A. H., Taha, H. 1990‘Summer Heat Islands, Urban Trees, and White Surfaces’ASHRAE Trans9613811388Google Scholar
  4. Ashie, Y., Vu, T. C., Asaeda, T. 1999‘Building a Canopy Model for the Analysis of Urban Climate’J. Wind Eng. Ind. Aerodyn.81237248CrossRefGoogle Scholar
  5. Blackadar, A. K. 1968‘The Vertical Distribution of Wind and Turbulent Exchange in Neutral Atmosphere’J. Geophys. Res.6730853102Google Scholar
  6. Gambo, K. 1978‘Notes on the Turbulence Closure Model for Atmospheric Boundary Layers’J. Meteorol. Soc. Jpn.56466480Google Scholar
  7. Hagishima, A., Tanimoto, J., Katayama, T. 2001‘Experiment Study on the Validity of an Urban Canopy Model in and Above the Canopy Layer’J. Archit. Plan. Environ. Eng.5483137(in Japanese)Google Scholar
  8. Ichinose, T., Shimodozono, K., Hanaki, K. 1999‘Impact of Anthropogenic Heat on Urban Climate in Tokyo’Atmos. Environ.3338973909CrossRefGoogle Scholar
  9. Inoue, M., Kondo, H. 1998‘A Study on the Effect of Anthropogenic Heat on the Temperature Distribution in the Urban Canopies’J. Jpn. Soc. Atmos. Environ.3393108(in Japanese)Google Scholar
  10. JMA: 2002, Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency, Appendix to WMO Numerical Weather Prediction Progress Report, available from
  11. Jurges, W. 1924‘Der Warmeuberergang an einer ebenen Wand’Gesundheight-Ingnierur191 (in German)Google Scholar
  12. Kikegawa, H., Genchi, Y., Yoshikado, H., Kondo, H. 2003‘Development of a Numerical Simulation System Toward Comprehensive Assessments of Urban Warming Countermeasures, Including Their Impacts upon the Urban Building’s Energy-demands’Appl. Energy76449466CrossRefGoogle Scholar
  13. Kondo, J. 1975‘Air–sea Bulk Transfer Coefficients in Diabatic Conditions’Boundary-Layer Meteorol.991124CrossRefGoogle Scholar
  14. Kondo, J. eds. 1994The Meteorology in Water EnvironmentAsakura-shotenTokyo350(in Japanese)Google Scholar
  15. Kondo, J., Akashi, S. 1976‘Numerical Studies on the Two-dimensional Flow in a Horizontally Homogeneous Canopy Layer’Boundary-Layer Meteorol.10255272CrossRefGoogle Scholar
  16. Kondo, H.: 1989, Description of NRIPR Mesoscale Model, Technical Report No. 44, National Research Institute for Pollution and Resources, Tsukuba, Japan, 76 ppGoogle Scholar
  17. Kondo, H. 1995‘The Thermally Induced Local Wind and Surface Inversion over the Kanto plain On Calm Winter Nights’J. Appl. Meteorol.3414391448CrossRefGoogle Scholar
  18. Kondo, H., Liu, F. H. 1998‘A Study on the Urban Thermal Environment Obtained Through a One-dimensional Urban Canopy Model’J. Jpn. Soc. Atmos. Environ.33179192(in Japanese)Google Scholar
  19. Kondo, H., Saigusa, N., Murayama, S., Yamamoto, S., Kannari, A. 2001‘A Numerical Simulation of the Daily Variation of CO2 in the Central Part of Japan, Summer Case’J. Meteorol. Soc. Jpn.791121CrossRefGoogle Scholar
  20. Kondo, H., Kikegawa, H. 2003‘Temperature Variation in the Urban Canopy with Anthropogenic Energy Use’Pure Appl. Geophys.160317324CrossRefGoogle Scholar
  21. Kusaka, H., Kondo, H., Kikegawa, H., Kimura, F. 2001‘A Simple Single-layer Urban Canopy Model for Atmospheric Models: Comparison with Multi-layer and Slab models’Boundary-Layer Meteorol.101329358CrossRefGoogle Scholar
  22. McAdams, W. H. 1954Heat Transmission3McGraw-HillNew York532 ppGoogle Scholar
  23. Martilli, A. 2002‘Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture’J. Appl. Meteorol.4112471266CrossRefGoogle Scholar
  24. Martilli, A., Clippier, A., Rotach, M. W. 2002‘An Urban Surface Exchange Parameterization for Mesoscale Models’Boundary-Layer Meteorol.104261304CrossRefGoogle Scholar
  25. Maruyama, T. 1991‘Numerical Simulation of Turbulent Boundary Layer over Complicated Surfaces Such as Urban Areas’J. Wind Eng.478181(in Japanese)Google Scholar
  26. Masson, V. 2000‘A Physically-based Scheme for the Urban Energy Budget in Atmospheric Models’Boundary-Layer Meteorol.94354397CrossRefGoogle Scholar
  27. Murakami, S., Mochida, A., Kim, S., Ooka, R., Yoshida, S., Kondo, H., Genchi, Y., and Shimada, A.: 2000, ‘Software Platform for the Total Analysis Wind Climate and Urban Heat Island. Integration of C.W.E. Simulation from Human Scale to Urban Scale, Proc 3rd International Symposium on Computational Wind Engineering, pp. 23–36Google Scholar
  28. Nakanishi, M. 2000‘Large-Eddy Simulation of Radiation Fog’Boundary-Layer Meteorol.94461493CrossRefGoogle Scholar
  29. Oke, T. R. 1978Boundary Layer ClimateMathuen & Co. Ltd.New York372 ppGoogle Scholar
  30. Sorbjan, Z., Uliasz, M. 1982‘Some Numerical Urban Boundary-layer Studies’Boundary-Layer Meteorol.22481502CrossRefGoogle Scholar
  31. Uno, I., Ueda, H., Wakamatsu, S. 1989‘Numerical Modeling of the Nocturnal Urban Boundary Layer’Boundary-Layer Meteorol.497798CrossRefGoogle Scholar
  32. Urano, A., Ichinose, T., Hanaki, K. 1999‘Thermal Environment Simulation for Three-dimensional Replacement of Urban Activity’J Wind Eng. Ind. Aerodyn.81197210CrossRefGoogle Scholar
  33. Vu, T. C., Ashie, Y., Asaeda, T. 2002‘A k–Turbulence Closure Model for the Atmospheric Boundary Layer including Urban Canopy’Boundary-Layer Meteorol.102459490CrossRefGoogle Scholar
  34. Watanabe, T., Kondo, J. 1990‘The Influence of the Canopy Structure and Density upon the Mixing Length within and above Vegetation’J Meteorol. Soc. Jpn.68227235Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hiroaki Kondo
    • 1
    • 5
  • Yutaka Genchi
    • 1
  • Yukihiro Kikegawa
    • 2
  • Yukitaka Ohashi
    • 3
  • Hiroshi Yoshikado
    • 1
  • Hiroshi Komiyama
    • 4
  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukabaJapan
  2. 2.Meisei UniversityHinoJapan
  3. 3.Okayama University of ScienceOkayamaJapan
  4. 4.University of TokyoTokyoJapan
  5. 5.Research Institute for Environmental Management TechnologyNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations