Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 379–400 | Cite as

On the Turbulence in the Upper Part of the Low-Level Jet: An Experimental and Numerical Study

  • L. ConanglaEmail author
  • J. Cuxart


The characteristics of low-level jets (LLJ) observed at the “Centro de Investigacion de la Baja Atmósfera” (CIBA) site in Spain are analysed, focussing on the turbulence generated in the upper part of the jet, a feature that is still to be thoroughly understood. During the Stable Boundary Layer Experiment in Spain (SABLES) 1998, captive balloon soundings were taken intensively, and their analyses have highlighted the main characteristics of the jet’s wind and temperature structure, leading to a composite profile. There are indications that the turbulence has a minimum at the level of the wind maximum, with elevated turbulence in a layer at a height between two and three times that of the LLJ maximum, but no direct measurements of turbulence were available at these heights. In September 2001, a 100-m tower at the same site was re-instrumented to give turbulence measurements up to 96.6 m above ground level. All occurrences of LLJ below this height between September 2002 and June 2003 have been selected and significant turbulence above the LLJ has been found. Simulations with a single-column turbulence kinetic energy model have been made in order to further investigate the generation of elevated turbulence. The results correlate well with the measurements, showing that in the layer above the LLJ, where there is significant shear and weakly stable stratification, conditions are conducive to the development of turbulence.


Elevated turbulence Low-level jet Nocturnal boundary layer SABLES 98 Stable boundary layer Single-column model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas E. L., Claffey K. J. and Makshtas A. P. (2000). ‘Low-level Atmospheric Jets and Inversion over the Western Weddell Sea’. Boundary-Layer Meteorol. 97: 459–486CrossRefGoogle Scholar
  2. Arritt R. W., Rink T. D., Segal M., Todey D. P. and Clark C. A. (1997). ‘The Great Plains Low-level Jet during the Warm Season of 1993’. Mon. Wea. Rev. 125: 2176–2192CrossRefGoogle Scholar
  3. Banta R. M., Senff C. J., White A. B., Trainder M., McNider R. T., Valente R. J., Mayour S. D., Alvarez T. M. H. R. J., Parrish D. and Fehsenfeld F. C. (1998). ‘Day-Time Buildup and Nightime Transport of Urban Ozone in the Boundary Layer during a Stagnation Episode’. J. Geophys. Res. 103: 22519–22544CrossRefGoogle Scholar
  4. Banta R. M., Newsom R. K., Lundquist J. K., Pichugina Y. L., Coulter R. L. and Mahrt L. (2002). ‘Nocturnal Low-Level Jet characteristics over Kansas during CASES-99’. Boundary-Layer Meteorol. 105: 221–252CrossRefGoogle Scholar
  5. Blackadar A. K. (1957). ‘Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’. Bull. Amer. Meteorol. Soc. 38: 282–290Google Scholar
  6. Bougeault P. and Lacarrère P. (1989). ‘Parameterization of Orography-induced Turbulence in a Mesobeta-Scale Model’. Mon. Wea. Rev. 117(8): 1872–1890CrossRefGoogle Scholar
  7. Conangla, L., Cuxart, J., and Terradellas, E.: 2002, ‘One-column Simulations of the SBL Observed during SABLES-98: Importance of the Surface Fluxes and the Dynamic Forcings’, Preprints 15th Symposium on Boundary Layers and Turbulence, Wageningen, The Netherlands, July 15–19: (2002) American Meteorological Society, 45 Beacon St., Boston, MA, pp. 313–314Google Scholar
  8. Cuxart J., Bougeault P. and Redelsperger J. L. (2000a). ‘A turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126: 1–30CrossRefGoogle Scholar
  9. Cuxart J., Yagüe C., Morales G., Terradellas E., Orbe J., Calvo J., Fernández A., Soler M. R., Infante C., Buenestado P., Espinalt A., Joergensen H. E., Rees J. M., Vilà J., Redondo J. M., Cantalapiedra I. R. and Conangla L. (2000b). ‘Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98) A Report’. Boundary-Layer Meteorol. 96: 337–370CrossRefGoogle Scholar
  10. Cuxart, J., Holtslag, A. A. M., Beare, R., Bazile, E., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G.-J., Svensson, G., Taylor, P., Wunsch, S., Weng, W., and Xu, K. M.: 2006, ‘Single-column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer’, Boundary-Layer Meteorol., in pressGoogle Scholar
  11. Darby, L. S., Banta, R. M., Brewer, W. A., Neff, W. D., Marchbanks, R. D., McCarty, B. J., Senff, C. J., White, A. B., Angevine, W. M., and Williams, E. J.: 2002, ‘Vertical Variations in O3 Concentrations before and after a Gust Front Passage’, J. Geophys. Res. 107 (D13), 4174, doi 10.1029/2001JD000996Google Scholar
  12. Deardorff J. W. (1980). ‘Stratocumulus-capped Mixed Layers Derived from a Three-dimensional Model’. Boundary-Layer Meteorol. 18: 495–527CrossRefGoogle Scholar
  13. Holton J. R. (1967). ‘The Diurnal Boundary Layer Wind Oscillation above Sloping Terrain’. Tellus 19: 199–205CrossRefGoogle Scholar
  14. Holtslag A. A. M. (2003). ‘GABLS Initiates Intercomparison for Stable Boundary Layers’. GEWEX News 13: 7–8Google Scholar
  15. Källstrand B. (1998). ‘Low Level Jets in a Marine Boundary Layer during Spring’. Contrib. Atmos. Phys. 71: 359–373Google Scholar
  16. Kolmogorov A. N. (1942). ‘Equations of Turbulent Motion of an Incompressible Fluid’. IZV. Akad. Nauk, SSSR, Ser. Fiz. 6: 56–58Google Scholar
  17. Lafore J. P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fisher C., Héreil P., Mascart P., Masson V., Pinty J. P., Redelsperger J. L., Richard E. and Vilà-Guerau de Arellano J. (1998). ‘The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16: 90–109CrossRefGoogle Scholar
  18. Mahrt L. (1981a). ‘The Early Evening Boundary Layer Transition’. Quart. J. Roy. Meteorol. Soc. 107: 329–343CrossRefGoogle Scholar
  19. Mahrt L. (1981b). ‘Modelling the Depth of the Stable Boundary-Layer’. Boundary-Layer Meteorol. 21: 3–9CrossRefGoogle Scholar
  20. Mahrt L., Heald R. C., Lenschow D. H., Stankov B. B. and Troen I. B. (1979). ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’. Boundary-Layer Meteorol. 17: 247–264CrossRefGoogle Scholar
  21. Mahrt L., Sun J., Blumen W., Delany T. and Oncley S. (1998). ‘Nocturnal Boundary-Layer Regimes’. Boundary-Layer Meteorol. 88: 255–278CrossRefGoogle Scholar
  22. Mahrt L. and Vickers D. (2003). ‘Formulation of Turbulent Fluxes in the Stable Boundary Layer’. J. Atmos. Sci. 60(20): 2538–2548CrossRefGoogle Scholar
  23. Parker M. J. and Raman S. (1993). ‘A Case Study of the Nocturnal Boundary Layer over a Complex Terrain’. Boundary-Layer Meteorol. 66: 303–324CrossRefGoogle Scholar
  24. Pielke R. A. (2002). Mesoscale Meteorological Modeling. Academic Press, USA, 676 ppGoogle Scholar
  25. Sánchez, E. and Cuxart, J.: 2004, `A Buoyancy-based Mixing Length Proposal for Cloudy Boundary Layers', Quart. J. Roy. Meteorol. Soc., 130, 3385–3404Google Scholar
  26. Smedman A. S. (1988). ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 44: 231–253CrossRefGoogle Scholar
  27. Smedman A. S., Tjernstrom M. and Högström U. (1993). ‘Analysis of the Turbulence Structure of a Marine Low-Level Jet’. Boundary-Layer Meteorol. 66: 105–126CrossRefGoogle Scholar
  28. Stull R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  29. Terradellas, E. and Cuxart, J.: 2001, ‘Aplicación de un modelo unidimensional para predicciones en el aeropuerto de Madrid-Barajas’, V Simposio Nacional de Predicción del INM, Madrid. ISBN: 84-8320-192-5. CD available at Instituto Nacional de Meteorología, Leonardo Prieto Castro, 8, 28040 Madrid, SpainGoogle Scholar
  30. Unden, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia- Moya, J. A., Jones, C., Lenderink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W., Odegaard, V., Rodriguez, E., Rummukainen, M., Room, R., Sattler, K., Saas, B. H., Savijarvi, H., Schreur, B. W., Sigg, R., The, H., and Tijm, A.: 2002, HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, c/o Per Unden SMHI, S-606 76 Norrköping, SWEDENGoogle Scholar
  31. Vukelic, B. and Cuxart, J. 2000, ‘One-dimensional Simulations of the Stable Boundary-layer as Observed in SABLES98’, Preprints 14th Symposium on Boundary Layers and Turbulence, Aspen, Colorado, August 7–11: 2000, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 579–580Google Scholar
  32. Whiteman C. D., Bian X. and Zhong S. (1997). ‘Low-level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains’. J. Appl. Meteorol. 36: 1363–1376CrossRefGoogle Scholar
  33. Wu Y. and Raman S. (1997). ‘Effect of Land-use Pattern on the Development of Low-Level Jets’. J. Appl. Meteorol. 36: 573–590CrossRefGoogle Scholar
  34. Wu Y. and Raman S. (1998). ‘The Summer Time Great Plains Low-Level Jet and the Effect of its Origin on Moisture Transport’. Boundary-Layer Meteorol. 88: 445–466CrossRefGoogle Scholar
  35. Zhong S., Fast J. D. and Bian X. (1996). ‘A Case Study of the Great Plains Low-Level Jet using Profiler Network Data and a High-resolution Mesoscale Model’. Mon. Wea. Rev. 124: 785–806CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Dept. Física AplicadaUniversitat Politècnica de CatalunyaManresaSpain
  2. 2.Grup de Meteorologia, Dept. FísicaUniversitat de les Illes BalearsSpain
  3. 3.Dept. Física AplicadaEscola Universitària Politècnica de ManresaManresaSpain

Personalised recommendations