Boundary-Layer Meteorology

, Volume 114, Issue 2, pp 413–437 | Cite as

Numerical simulations of katabatic jumps in coats land, Antartica

  • Ye Yu
  • Xiaoming Cai
  • John C. King
  • Ian A. Renfrew
Article

Abstract

A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli's theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli's theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

Antarctica Bernoulli's theorem Hydraulic theory Katabatic jump Momentum balance Pressure change. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolphs, U. and Wendler, G.: 1995, 'A Pilot-study on the Interactions between Katabatic Winds and Polynyas at the Adélie Coast, Eastern Antarctica', Antarctic Sci. 7, 307–314.Google Scholar
  2. Ball, F. K.: 1956, 'The Theory of Strong Katabatic Winds', Aust. J. Phys. 9, 373–386.Google Scholar
  3. Bromwich, D. H.: 1989, 'Satellite Analysis of Antarctic Katabatic Wind Behavior', Bull. Amer. Meteorol. Soc. 70, 738–749.Google Scholar
  4. Bromwich, D. H. and Kurtz, D. D.: 1984, 'Katabatic Wind Forcing of the Terra Nova Bay Polynya', J. Geophys. Res. 89, 3561–3572.Google Scholar
  5. Cotton, Sr. W. R., Pielke, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden J. P.: 2003, 'RAMS 2001: Current Status and Future Directions', Meteorol. Atmos. Phys. 82, 5–29.Google Scholar
  6. Enger, L. and Grisogono, B.: 1998, 'The Response of Bora-Type Flow to Sea Surface Tem-perature', Quart. J. Roy. Meteorol. Soc. 124, 1227–1244.Google Scholar
  7. Gallée, H. and Pettré, P.: 1998, 'Dynamical Constraints on Katabatic Wind Cessation inAdélie Land, Antarctica', J. Atmos. Sci. 55, 1755–1770.Google Scholar
  8. Gallée, H. and Schayes, G.: 1992, 'Dynamical Aspects of Katabatic Wind Evolution in the Antarctic Coastal Zone', Boundary-Layer Meteorol. 59, 141–161.Google Scholar
  9. Gallée, H., Pettré, P., and Schayes, G.: 1996, 'Sudden Cessation of Katabatic Winds in Adélie Land, Antarctica', J. Appl. Meteorol. 35, 1129–1141.Google Scholar
  10. Heinemann, G.: 1999, 'The KABEG' 97 Field Experiment: An Aircraft-Based Study of Katabatic Wind Dynamics over the Greenland Ice Sheet', Boundary-Layer Meteorol. 93, 75–116.Google Scholar
  11. Heinemann, G.: 2002, 'Aircraft-Based Measurements of Turbulence Structures in the Kata-batic Flow over Greenland', Boundary-Layer Meteorol. 103, 49–81.Google Scholar
  12. Henderson, F. M.: 1966, Open Channel Flow, Macmillan, New York, 522 pp.Google Scholar
  13. Kawagoshi, N. and Hager, W. H.: 1990, 'B-Jump in Sloping Channel, II', J. Hydraulic Res. 28, 461–480.Google Scholar
  14. King, J. C.: 1993, 'Control of Near-Surface Winds over an Antarctic Ice Shelf', J. Geophys. Res. 98 (D7), 12949–12953.Google Scholar
  15. King, J. C. and Turner, J.: 1997, Antarctic Meteorology and Climatology, Cambridge University Press, Cambridge, 409 pp.Google Scholar
  16. King, J. C., Varley, M. J., and Lachlancope, T. A.: 1998, 'Using Satellite Thermal Infrared Imagery to Study Boundary Layer Structure in an Antarctic Katabatic Wind Region', Int. J. Remote Sens. 19, 3335–3348.Google Scholar
  17. Lied, N. T.: 1964, 'Stationary Hydraulic Jumps in a Katabatic Flow near Davis, Antarctica, 1961', Aust. Meteorol. Mag. 47, 40–51.Google Scholar
  18. Louis, J. F.: 1979, 'A Parametric Model of Vertical Eddy Fluxes in the Atmosphere', Boundary-Layer Meteorol. 17, 187–202.Google Scholar
  19. Mahrer, Y. and Pielke, R. A.: 1979, 'A Numerical Study of the Airflow over Irregular Ter-rain', Betr. Phys. Atmosph. 50, 98–113.Google Scholar
  20. Mahrt, L.: 1982, 'Momentum Balance of Gravity Flow', J. Atmos. Sci. 39, 2701–2711.Google Scholar
  21. Mellor, G. L. and Yamada, T.: 1982, 'Development of a Turbulence Closure Model for Geophysical Fluid Problems', Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  22. Parish, T. R.: 1988, 'Surface Winds over the Antarctic Continent: A Review', Rev. Geophys. 26, 169–180.Google Scholar
  23. Parish, T. R.: 1992, 'On the Role of Antarctic Katabatic Winds in Forcing Large-Scale Tropospheric Motion', J. Atmos. Sci. 49, 1374–1385.Google Scholar
  24. Parish, T. R. and Bromwich, D. H.: 1987, 'The Surface Wind Field over the Antarctic Ice Sheets', Nature 328, 51–54.Google Scholar
  25. Parish, T. R., Bromwich, D. H., and Tzeng, R. Y.: 1994, 'One the Role of the Antarctic Continent in Forcing Large-Scale Circulation in the High Southern Latitudes', J. Atmos. Sci. 51, 3566–3579.Google Scholar
  26. Peel, D. A.: 1976, 'Snow Accumulation, Conductance and Temperature Inland from Halley Bay', BAS Bull. 43, 1–13.Google Scholar
  27. Pettré, P. and André, J. C.: 1991, 'Surface Pressure Change through Loewe' s Phenomena and Katabatic Flow Jumps: Study of Two Cases in Adélie Land, Antarctic', J. Atmos. Sci. 48, 557–571.Google Scholar
  28. Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Coprland, J. H.: 1992, 'A Comprehensive Meteorological Modeling System–RAMS', Meteorol. Atmos. Phys. 49, 69–91.Google Scholar
  29. Renfrew, I. A.: 2004, 'The Dynamics of Idealized Katabatic Flow over a Moderate Slope and Ice Shelf', Quart. J. R. Meteorol. Soc., in press.Google Scholar
  30. Renfrew, I. A. and Anderson, P. S.: 2002, 'The Surface Climatology of an Ordinary Katabatic Wind Regime in Coats Land, Antarctica', Tellus 54A, 463–484.Google Scholar
  31. Smagorinsky, J.: 1963, 'General Circulation Experiments with Primitive Equations: Part I: The Basic Experiment', Mon. Wea. Rev. 91, 99–165.Google Scholar
  32. Stull, R. B.: 1988, An Introduction to Boundary-Layer Meteorology, Kluwer Academic Pub-lishers, London, 666 pp.Google Scholar
  33. Vosper, S. B., Mobbs, S. D., and Gardiner, B. A.: 2002, 'Measurements of the Near-Surface Flow over a Hill', Quart. J. Roy. Meteorol. Soc. 128, 2257–2280.Google Scholar
  34. Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T. J., Ojima, D., Pielke, R. A., Taylor, C., Tague, C., Tremback, C. J., and Vidale, P. J.: 2000, 'Coupled Atmosphere-Biophysics Hydrology Models for Environmental Modeling', J. Appl. Meteorol. 39, 931–944.Google Scholar
  35. Yu, Y.: 2004, Numerical Simulations of Katabatic Flow Jumps in Antarctica, PhD Thesis, The University of Birmingham, U. K., 194 pp.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ye Yu
    • 1
  • Xiaoming Cai
    • 1
  • John C. King
    • 2
  • Ian A. Renfrew
    • 2
  1. 1.School of Geography, Earth and Environmental SciencesThe University of BirminghamEdgbaston BirminghamU.K
  2. 2.Physical Sciences Division British Antarctic SurveyNatural Environment Research Council, High Cross, Madingley RoadCambridgeU.K

Personalised recommendations