Boundary-Layer Meteorology

, Volume 116, Issue 1, pp 37–61

Observations of the Relation Between Upslope Flows and the Convective Boundary Layer in Steep Terrain

  • C. Reuten
  • D. G. Steyn
  • K. B. Strawbridge
  • P. Bovis
Article

Abstract

Slope flow mechanisms are crucial for the transport of air pollutants in complex terrain. Previous observations in sloping terrain showed upslope flows filling the entire convective boundary layer (CBL) and reducing air pollution concentrations by venting air pollutants out of the CBL into the free atmosphere. During the Pacific 2001 Air Quality Field Study in the Lower Fraser Valley, British Columbia, Canada, we observed slope flows during weak synoptic winds, clear skies, and strong daytime solar heating. With a Doppler sodar we measured the three wind components at the foot of a slope having an average angle of 19° and a ridge height of 780 m. We operated a scanning lidar system and a tethersonde at a nearby site on the adjacent plain to measure backscatter of particulate matter, temperature, wind speed, wind direction, and specific humidity. Strong daytime upslope flows of up to 6 m s−1 through a depth of up to 500 m occurred in the lower CBL, but with often equally strong and deep return flows in the upper part of the CBL. The mass transport of upslope flow and return flow approximately balanced over a 4-h morning period, suggesting a closed slope-flow circulation within the CBL. These observations showed that air pollutants can remain trapped within a CBL rather than being vented from the CBL into the free atmosphere.

Keywords

Air pollution Anabatic winds Convective boundary layer Upslope flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, B.W. 1981Meso-scale Atmospheric CirculationsAcademic PressLondon495Google Scholar
  2. Banta, R.M. 1984Daytime Boundary-Layer Evolution over Mountainous Terrain. Part I: Observations of the Dry CirculationsMon. Wea. Rev112340356Google Scholar
  3. Brehm, M. 1986Experimentelle und numerische Untersuchungen der Hangwindschicht und ihre Rolle bei der Erwärmung von Tälern. Ph.D. DissertationLudwig-Maximilians-Universität MünchenGermany173Google Scholar
  4. Chen, R.-R., Berman, N.S., Boyer, D.L., Fernando, H.J.S. 1996Physical Model of Diurnal Heating in the Vicinity of a Two-dimensional RidgeJ. Atmos. Sci536285Google Scholar
  5. Davidson, B. 1963Some Turbulence and Wind Variability Observations in the Lee of Mountain RidgesJ. Appl. Meteorol2463472Google Scholar
  6. Deardorff, J.W., Willis, G.E. 1987Turbulence within a Baroclinic Laboratory Mixed Layer above a Sloping SurfaceJ. Atmos. Sci44772778Google Scholar
  7. Defant, F. (1949). Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Met. Geoph. Biokl., Ser. A 1: 421–450. English in: Whiteman, C. D. and Dreiseitl, E. (1984). Alpine Meteorology. Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. Pacific Northwest Laboratory, Richland, Washington, pp. 95-121Google Scholar
  8. Wekker, S. 1997The Behaviour of the Convective Boundary Layer Height over Orographically Complex Terrain. Master Thesis, Universität KarlsruheGermany and Wageningen Agricultural UniversityThe Netherlands295Google Scholar
  9. Wekker, S. 2003Structure and Morphology of the Convective Boundary Layer in Mountainous Terrain. Ph.D. DissertationThe University of British ColumbiaCanada191Google Scholar
  10. Egger, J. 1981On the Linear Two-dimensional Theory of Thermally Induced Slope WindsBeitr. Phys. freien Atmos54465481Google Scholar
  11. Haiden, T. 1990Analytische Untersuchungen zur konvektiven Grenzschicht im Gebirge. Ph.D. DissertationUniversität WienAustria140Google Scholar
  12. Ingel’, L.K. 2000Nonlinear Theory of Slope FlowsIzvestiya Atmos. Ocean. Phys36384389Google Scholar
  13. Kondo, H. 1984The Difference of the Slope Wind Between Day and NightJ. Meteorol. Soc. Japan62224232Google Scholar
  14. Koßmann, M. 1998Einfluß orographisch induzierter Transportprozesse auf die Struktur der atmosphärischen Grenzschicht und die Verteilung von Spurengasen. Ph.D. DissertationFakultät für Physik der Universität Karlsruhe (TH)Karlsruhe193Google Scholar
  15. Kuwagata, T., Kondo, J. 1989Observations and Modeling of Thermally Induced Upslope FlowBoundary-Layer Meteorol49265293Google Scholar
  16. Li, S.-M. 2004A Concerted Effort to Understand the Ambient Particulate Matter in the Lower Fraser Valley: The Pacific 2001 Air Quality StudyAtmos. Environ3857195731Google Scholar
  17. Mendonca, B. 1969Local Wind Circulation on the Slopes of Mauna LoaJ. Appl. Meteorol8533541Google Scholar
  18. Mitsumoto, S. 1989A Laboratory Experiment on the Slope WindJ. Meteorol. Soc. Japan67565574Google Scholar
  19. Neff, W.D. 1990

    Remote Sensing of Atmospheric Processes over Complex Terrain

    Blumen, W. eds. Atmospheric Processes Over Complex Terrain. Meteorological Monographs 23(45)American Meteorological SocietyBoston173228
    Google Scholar
  20. Orville, H.D. 1964On Mountain Upslope WindsJ. Atmos. Sci21622633Google Scholar
  21. Petkovšek, Z. 1982Ein einfaches Modell des Tages-HangwindesZeits. Meteorol323141Google Scholar
  22. Prandtl, L. 1942Führer durch die Ströhmungslehre. Vieweg, BraunschweigEnglish: Essentials of Fluid Dynamics. BlackieLondon4521952Google Scholar
  23. Reuten, C., Steyn, D.G., Strawbridge, K.B., Bovis, P. 2002Air Pollutants Trapped in Slope Flow SystemsBull. Amer. Meteorol. Soc83966Google Scholar
  24. Schumann, U. 1990Large-eddy Simulation of the Upslope Boundary LayerQuart. J. Roy. Meteorol. Soc116637670Google Scholar
  25. Segal, M., Ookouchi, Y., Pielke, R.A. 1987On the Effect of Steep Slope Orientation on the Intensity of Daytime Upslope FlowJ. Atmos. Sci4435873592Google Scholar
  26. Steyn, D.G., Faulkner, D.A. 1986The Climatology of Sea-Breezes in the Lower Fraser Valley, BCClimatol. Bull202139Google Scholar
  27. Steyn, D.G., Bottenheim, J.W., Thompson, R.B. 1997Overview of Tropospheric Ozone in the Lower Fraser Valley, and the Pacific ’93 Field StudyAtmos. Environ3120252035Google Scholar
  28. Strawbridge, K.B., Snyder, B.J. 2004Planetary Boundary Layer Height Determination during Pacific 2001 Using the Advantage of a Scanning Lidar InstrumentAtmos. Environ3858615871Google Scholar
  29. Vergeiner, I. 1982Eine energetische Theorie der Hangwinde. 17. Int. Tag. Alpine Meteorol.. Berchtesgaden, 1982Ann. Meteorol19189191Google Scholar
  30. Vergeiner, I. 1991Comments on ‘Large-Eddy Simulation of the Up-Slope Boundary Layer’ by Ulrich Schumann (April 1990, 116, 637-670)Quart. J. Roy. Meteorol. Soc11713711372Google Scholar
  31. Vogel, B., Adrian, G., Fiedler, F. 1987MESOKLIP – Analysen der Meteorologischen Beobachtungen von Mesoskaligen Phänomenen im OberrheingrabenInst. für Meteorologie Klimaforschung der Univ. KarlsruheGermany369Google Scholar
  32. Wenger, R. 1923Zur Theorie der Berg- und TalwindeMeteorol. Zeits40193204Google Scholar
  33. Whiteman, C.D. 2000Mountain MeteorologyFundamentals and Applications. Oxford University PressNew York355Google Scholar
  34. Wooldridge, G.L., McIntyre, E.L.,II 1986The Dynamics of the Planetary Boundary Layer over a Heated Mountain SlopeGeofizika3321Google Scholar
  35. Ye, Z.J., Segal, M., Pielke, R.A. 1987Effects of Atmospheric Thermal Stability and Slope Steepness on the Development of Daytime Thermally Induced Upslope FlowJ. Atmos. Sci4433413354Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • C. Reuten
    • 1
  • D. G. Steyn
    • 1
  • K. B. Strawbridge
    • 2
  • P. Bovis
    • 1
  1. 1.Atmospheric Science Program, Department of Earth and Ocean SciencesThe University of British ColumbiaVancouverCanada
  2. 2.Air Quality Process Research DivisionMeteorological Service of CanadaEgbertCanada

Personalised recommendations