Boundary-Layer Meteorology

, Volume 117, Issue 2, pp 231–257 | Cite as

‘Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’

  • Semion Sukoriansky
  • Boris GalperinEmail author
  • Veniamin Perov


A new spectral closure model of stably stratified turbulence is used to develop a K–ε model suitable for applications to the atmospheric boundary layer. This K–ε model utilizes vertical viscosity and diffusivity obtained from the spectral theory. In the ε equation, the Coriolis parameter-dependent formulation of the coefficient C 1 suggested by Detering and Etling is generalized to include the dependence on the Brunt-Väisälä frequency, N. The new K–ε model is tested in simulations of the ABL over sea ice and compared with observations from BASE as simulated in large-eddy simulations by Kosovic and Curry, and observations from SHEBA.


Atmospheric boundary layer Spectral theories Stable stratification Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel, H. D., Holm, D. D., Marsden, J. E., Ratiu, T. 1984‘Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow’Phys. Rev. Lett.5223522355CrossRefGoogle Scholar
  2. Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘An Overview of the SHEBA Atmospheric Surface Flux Programm’ 13th Symposium on Boundary Layers and, Turbulence, Dallas, TX, American Meteorological Society., 550–555.Google Scholar
  3. Cane, M.: 1993, Near-Surface Mixing and the Ocean’s Role in Climate. in: B. Galperin and S. A. Orszag, (eds.), Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, pp. 489–509.Google Scholar
  4. Cheng, Y., Canuto, V. M., Howard, A. M. 2002‘An Improved Model for the Turbulent PBL’J. Atmos. Sci.5915501565CrossRefGoogle Scholar
  5. Cho, J. Y. N., Newell, R. E., Barrick, J. D. 1999‘Horizontal Wavenumber Spectra of Winds, Temperature, and Trace Gases During the Pacific Exploratory Missions: 2. Gravity Waves, Quasi-Two-Dimensional Turbulence, and Vortical Modes’J. Geophys. Res.1041629716308Google Scholar
  6. Curry, J. A. 1986‘Interaction Among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds’J. Atmos. Sci.4390106Google Scholar
  7. Curry, J. A., Ebert, E. E., Herman, G. F. 1988‘Mean and Turbulence Structure of the Summertime Arctic Cloudy Boundary Layer’Quart. J. Roy. Meteorol. Soc.114715746CrossRefGoogle Scholar
  8. Curry, J. A., Rossow, W. B., Randall, D., Schramm, J. L. 1996‘Overview of Arctic Cloud and Radiation Characteristics’J. Climate917311764CrossRefGoogle Scholar
  9. Detering, H., Etling, D. 1985‘Application of the E–ε Model to the Atmospheric Boundary Layer’Boundary-Layer Meteorol.33113133CrossRefGoogle Scholar
  10. Fett, R. W., Burk, S. D., Thompson, W. T. 1994‘Environmental Phenomena of the Beaufort Sea Observed During the Leads Experiment’Bull. Amer. Meteorol. Soc.7521312145Google Scholar
  11. Galperin, B., Kantha, L. H., Hassid, S., Rosati, A. 1988‘A Quasi-Equilibrium Turbulent Energy Model for Geophysical Flows’J. Atmos. Sci.455562CrossRefGoogle Scholar
  12. Galperin, B., Kantha, L. H. 1989‘Turbulence Model for Rotating Flows’AIAA J.27750757Google Scholar
  13. Galperin, B., Mellor, G. L. 1991‘The Effects of Streamline Curvature and Spanwise Rotation on Near-Surface, Turbulent Boundary-Layers’J. Appl. Math. Physics (ZAMP)42565583Google Scholar
  14. Galperin, B., and Orszag, S., (eds.), 1993: Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, 622 pp.Google Scholar
  15. Galperin, B., Rosati, A., Kantha, L. H., Mellor, G. L. 1989‘Modeling Rotating Stratified Turbulent Flows With Application to Oceanic Mixed Layers’J. Phys. Oceanogr.19901916CrossRefGoogle Scholar
  16. Hahn, C. J., Warren, S. G., London, J., Chervin, R. M., and Jenne, R. L.: 1984, Atlas of Simultaneous Occurrences of Different Cloud Types Over Land. NCAR Tech. Note TN-241-STR, 21 pp.Google Scholar
  17. Holtslag, A. A. M. 2003‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’GEWEX News1378Google Scholar
  18. Howard, L. N. 1961‘Note on a Paper of John W. Miles’J. Fluid Mech.10509512Google Scholar
  19. Huschke, R. E.: 1969 Arctic Cloud Statistics from Air-Calibrated Surface Weather Observations. The Rand Corporation RM-6173-PR, 79 pp.Google Scholar
  20. Intrieri, J. M., Shupe, M. D., Uttal, T., McCarty, B. J. 2002‘Annual Cycle of Arctic Cloud Geometry and Phase from Radar and Lidar at SHEBA’J. Geophys. Res.1078030Google Scholar
  21. Kantha, L. H. 2003‘On an Improved Model for the Turbulent PBL’J. Atmos. Sci.6022392246Google Scholar
  22. Kantha, L. H., Clayson, C. A. 1994‘An Improved Mixed-Layer Model for Geophysical Applications’J. Geophys. Res.992523525266CrossRefGoogle Scholar
  23. Kim, J., Mahrt, L. 1993‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’Tellus44381394Google Scholar
  24. King, J. C. 1990‘Some Measurements of Turbulence Over an Antarctic Ice Shelf’Quart. J. Roy. Meteorol. Soc.116379400CrossRefGoogle Scholar
  25. Kitaigorodskii, S. A., Joffre, S. M. 1988‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer’Tellus40A419443Google Scholar
  26. Kondo, J., Kanechika, O., Yasuda, N. 1978‘Heat and Momentum Transfer Under Strong Stability in the Atmospheric Surface Layer’J. Atmos. Sci.3510121021CrossRefGoogle Scholar
  27. Kosovic, B., Curry, J. A. 2000‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’J. Atmos. Sci.5710521068CrossRefGoogle Scholar
  28. Kraichnan, R. H. 1959‘The Structure of Isotropic Turbulence at Very High Reynolds Numbers’J. Fluid Mech.5497543Google Scholar
  29. Kraichnan, R. H. 1987‘An Interpretation of the Yakhot–Orszag Turbulence Theory’Phys. Fluids3024002405Google Scholar
  30. Large, W. G., McWilliams, J. C., Niiler, P. 1986‘Upper Ocean Thermal Response to Strong Autumnal Forcing of the Northeast Pacific’’J. Phys. Oceanogr.1615241550CrossRefGoogle Scholar
  31. Large, W. G., McWilliams, J. C., Doney, S. C. 1994‘Oceanic Vertical Mixing: A Review and a Model with Nonlocal Boundary Layer Parameterization’Rev. Geophys.32363403CrossRefGoogle Scholar
  32. Larsen, S. E., Courtney, M., Mahrt, L. 1990Low Frequency Behaviour of Horizontal Power Spectra in Stable Surface LayersAmerican Meteorological SocietyBoston, U.S.A401404Proc. 9th AMS Symposium on Turbulence and DiffusionGoogle Scholar
  33. Mack, S. A., Schoeberlein, H. C. 2004‘Richardson Number and Ocean Mixing: Towed Chain Observations’J. Phys. Oceanogr.34736754CrossRefGoogle Scholar
  34. Mahrt, L. 1998‘Stratified Atmospheric Boundary Layers and Breakdown of Models’Theoret. Comput. Fluid Dyn.11263279Google Scholar
  35. Mahrt, L. 1999‘Stratified Atmospheric Boundary Layers’Boundary-Layer Meteorol.90375396Google Scholar
  36. McComb, W. D. (1991) The Physics of Fluid Turbulence. Oxford University Press, 576 ppGoogle Scholar
  37. Mellor, G. L., Yamada, T. 1982‘Development of Turbulence Closure Model for Geophysical Fluid Problems’Rev. Geophys. Space Phys.20851875Google Scholar
  38. Miles, J. W. 1961‘On the Stability of Heterogeneous Shear Flows’J. Fluid Mech.10496508Google Scholar
  39. Orszag, S. A. (1977) Statistical Theory of Turbulence. in R. Balian J.-L. Peabe, (eds.), Les Houches Summer School in Physics, Gordon and Breach, 237–374.Google Scholar
  40. Paluch, I. R., Lenschow, D. H. 1997‘Arctic Boundary Layer in the Fall Season Over Open and Frozen Sea’J. Geophys. Res.,1022595525971CrossRefGoogle Scholar
  41. Perov, V., Zilitinkevich, S., Ivarsson, K.-I. 2001‘Implementation of New Parameterisation of the Surface Turbulent Fluxes for Stable Stratification in the 3-D HIRLAM’HIRLAM Newsletter376066Google Scholar
  42. Perov, V., Gollvik, S. (1996) A 1-D Test of a Non-Local K–ε Boundary Layer Scheme for a NWP Model Resolution. HIRLAM Technical Report 25.Google Scholar
  43. Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., Perovich, D. K. (2002) ’Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Site Description, Data Processing and Accuracy Estimates’. NOAA Tech. Memo. OAR ETL.Google Scholar
  44. Peters, H., Gregg, M. C., Toole, J. M. 1988‘On the Parameterization of Equatorial Turbulence’J. Geophys. Res.9311991218CrossRefGoogle Scholar
  45. Pinto, J. O., Curry, J. A. 1995‘Atmospheric Convective Plumes Emanating from Leads, II, Microphysical and Radiative Processes’J. Geophys. Res.10046334642Google Scholar
  46. Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., Hartman, D. 1989‘Cloud Radiative Forcing and Climate: Results from the Earth Radiative Budget Experiment’Science2436367Google Scholar
  47. Rodi, W., (1975) A note on the Empirical Constant in the Kolmogorov-Prandtl Eddy-Viscosity Expression. J. Fluids Eng., Trans. ASME, 386–389.Google Scholar
  48. Rodi, W. (1980) Turbulence Models and Their Application in Hydraulics, Tech. Rep. Int. Assoc. for Hydraul. Res., Delft, Netherlands.Google Scholar
  49. Rossow, W. B., Walker, A. W., Garder, L. C. 1993‘Comparison of ISCCP and Other Cloud Amounts’J. Climate623942418Google Scholar
  50. Ruffeaux, D., Ola, P., Persson, G., Fairall, C., Wolfe, D. E. 1995‘Ice Pack and Surface Energy Budgets During LEADEX 1992’J. Geophys. Res.10045934612Google Scholar
  51. Sukoriansky, S., Galperin, B. (2005) A Spectral Closure Model for Turbulent Flows with Stable Stratification. in: H. Baumert, J. Simpson, J. Sundermann, (eds.), Marine Turbulence - Theories, Observations and Models, Cambridge University Press, pp. 53–65.Google Scholar
  52. Sukoriansky, S., Galperin, B., Staroselsky, I. 2003‘Cross-term and ε-Expansion in RNG Theory of Turbulence’Fluid Dyn. Res.33319331CrossRefGoogle Scholar
  53. Tsay, S. C., Jayaweera, K. 1984‘Physical Characteristics of Arctic Stratus Clouds’J. Clim. Appl. Meteorol23584596CrossRefGoogle Scholar
  54. Uttal, T.,  et al. 2002‘Surface Heat Budget of the Arctic Ocean’Bull. Amer. Meteorol. Soc.83255276Google Scholar
  55. Walter, B. A., Overland, J. E., Turet, P. 1995‘A Comparison of Satellite-Derived and Aircraft-Measured Surface Sensible Heat Fluxes Over the Beaufort Sea’J. Geophys. Res.10045834591CrossRefGoogle Scholar
  56. Yakhot, V., Orszag, S. A. 1986‘Renormalization Group Analysis of Turbulence. I. Basic Theory’J. Sci. Comput.1351CrossRefGoogle Scholar
  57. Zilitinkevich, S. 2002‘Third-Order Transport due to Internal Waves and Non-Local Turbulence in the Stably Stratified Surface Layer’Quart. J. Roy. Meteorol. Soc.128913925Google Scholar
  58. Zilitinkevich, S. S., Baklanov, A., Rost, J., Smedman, A.-S., Lykosov, V., Calanca, P. 2002a‘Diagnostic and Prognostic Equations for the Depth of the Stably Stratified Ekman Boundary Layer’Quart, J. Roy. Meteorol. Soc.1282546Google Scholar
  59. Zilitinkevich, S. S., Baklanov, A. 2002‘Calculation of the Height of Stable Boundary Layers in Practical Applications’Boundary-Layer Meteorol.105389409CrossRefGoogle Scholar
  60. Zilitinkevich, S. S., Calanca, P. 2000‘An Extended Similarity – Theory for the Stably Stratified Atmospheric Surface Layer’Quart. J. Roy. Meteorol. Soc.12619131923CrossRefGoogle Scholar
  61. Zilitinkevich, S. S., Esau, I. N. 2002‘On Integral Measures of the Neutral, Barotropic Planetary Boundary Layers’Boundary-Layer Meteorol.104371379CrossRefGoogle Scholar
  62. Zilitinkevich, S. S., Esau, I. N. 2003‘The Effect of Baroclinicity on the Depth of Neutral and Stable Planetary Boundary Layers’Quart. J. Roy. Meteorol. Soc.12933393356CrossRefGoogle Scholar
  63. Zilitinkevich, S., Mironov, D. V. 1996‘A Multi-Limit Formulation for the Equilibrium Depth of a Stably Stratified Boundary Layer’Boundary-Layer Meteorol.81325351Google Scholar
  64. Zilitinkevich, S. S., Perov, V. L., King, J. C. 2002b‘Near-Surface Turbulent Fluxes in Stable Stratification: Calculation Techniques for use in General-Circulation Models’Quart. J. Roy. Meteorol. Soc.12815711587Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Semion Sukoriansky
    • 1
  • Boris Galperin
    • 2
    Email author
  • Veniamin Perov
    • 3
  1. 1.Department of Mechanical Engineering/Perlstone Center for Aeronautical Engineering StudiesBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.College of Marine ScienceUniversity of South FloridaSt. PetersburgU.S.A
  3. 3.Department of Research and DevelopmentSwedish Meteorological and Hydrological InstituteNorrköpingSweden

Personalised recommendations