Boundary-Layer Meteorology

, Volume 114, Issue 1, pp 91–109 | Cite as

Representing urban areas within operational numerical weather prediction models

  • M. J. Best
Article

Abstract

A new parametrization for the surface energy balance of urban areas is presented. It is shown that this new method can represent some of the important urban phenomena, such as an urban heat island and the occurrence of a near-neutral nocturnal boundary layer with associated positive turbulent heat fluxes, unlike the traditional method for representing urban areas within operational numerical weather prediction (NWP) models. The basis of the new parametrization is simple and can be applied easily within an operational NWP model. Also, it has no additional computational expense compared to the traditional scheme and is hence applicable for operational forecasting requirements. The results show that the errors for London within the Met Office operational mesoscale model have been significantly reduced since the new scheme was introduced. The bias and root-mean-square (rms) errors have been approximately halved, with the rms error now similar to the model as a whole. The results also show that a seasonal cycle still exists in the model errors, but it is suggested that this may be caused by anthropogenic heat sources that are neglected in the urban scheme.

Keywords

Numerical weather prediction Operational model Urban areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljaars, A. C. M., Holtslag, A. A. M. 1991‘Flux Parametrisation over Land Surfaces for Atmospheric Models’J. Appl. Meteorol30327341Google Scholar
  2. Best, M. J. 1998‘A Model to Predict Surface Temperatures’Boundary-Layer Meteorol88279306Google Scholar
  3. Best, M. J., Hopwood, W. P. 2001‘Modelling the Local Surface Exchange over a Grass-Field Site under Stable Conditions’Quart. J. Roy. Meteorol. Soc12720332052Google Scholar
  4. Black, P. B. and Tice, R. A.: 1988, Comparison of Soil Freezing Curve and Soil Water Curve Data for Windsor Sandy Loam, US Army Cold Regions Research and Engineering Laboratory Report, 88:16, 37 pp.Google Scholar
  5. Bornstein, R., Lin, Q. 2000‘Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies’Atmos. Environ34507516Google Scholar
  6. Chan, A. T., So, E. S. P., Samad, S. C. 2001‘Strategic Guidelines for Street Canyon Geometry to Achieve Sustainable Street Air Quality’Atmos. Environ3540894098Google Scholar
  7. Collatz, G. J., Ball, J. T., Grivet, C., Berry, J. A. 1991‘Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: A model that Includes a Laminar Boundary Layer’Agric. For. Meteorol54107136Google Scholar
  8. Collatz, G. J., Ribas-Carbo, M., Berry, J. A. 1992‘A Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants’Aust. J. Plant Physiol19519538Google Scholar
  9. Cosby, B. J., Hornberger, G. M., Clapp, R. B., Ginn, T. R. 1984‘A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils’Water Resour. Res20682690Google Scholar
  10. Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., Smith, J. 1999‘The Impact of New Land Surface Physics on the GCM Simulation of Climate and Climate Sensitivity’Clim. Dyn15183203Google Scholar
  11. Cox, P. M., Huntingford, C., Harding, R. J. 1998‘A Canopy Conductance and Photosynthesis Model for Use in a GCM Land Surface Scheme’J. Hydrol212–2137994Google Scholar
  12. Cullen, M. J. P. 1993‘The Unified Forecast/Climate Model’Meteorol. Mag1228194Google Scholar
  13. Dyer, A. J. 1974‘A Review of Flux-Profile Relationships’Boundary-Layer Meteorol7363372Google Scholar
  14. Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., Taylor, C. M. 2003‘Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme’J. Hydrometeorol4530543Google Scholar
  15. Garratt, J. R. 1992The Atmospheric Boundary LayerCambridge University PressCambridge316Google Scholar
  16. Grimmond, C. S. B., Oke, T. R. 1995‘Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities’J. Appl. Meteorol34873889Google Scholar
  17. Grimmond, C. S. B., Cleugh, H. A., Oke, T. R. 1991‘An Objective Urban Heat Storage Model and its Comparison with Other Schemes’Atmos. Environ25311326Google Scholar
  18. Huang, H., Yoshiaki, A., Mitsuru, A., Masamitsu, T. 2000‘A Two-Dimensional Air Quality Model in an Urban Street Canyon: Evaluation and Sensitivity Analysis’Atmos. Environ5689698Google Scholar
  19. Kim, J.-J., Baik, J.-J. 2001‘Urban Street-Canyon Flows with Bottom Heating’Atmos. Environ3533953404Google Scholar
  20. Martilli, A., Clappier, A., Rotach, M. W. 2002‘An Urban Surface Exchange Parameterisation for Mesoscale Models’Boundary-Layer Meteorol104261304Google Scholar
  21. Masson, V. 2000‘A Physically-Based Scheme For The Urban Energy Budget in Atmospheric Models’Boundary-Layer Meteorol94357397Google Scholar
  22. Monteith, J. L. 1965‘Evaporation and the Environment’Symp. Soc. Expl. Biol19205234Swansea, September 8–12, 1964Google Scholar
  23. Morison, J. L., Gifford, R. M. 1983‘Stomatal Sensitivity to Carbon Dioxide and Humidity’Plant Physiol71789796Google Scholar
  24. Murakami, S., Ooka, R., Mochida, A., Yoshida, S., Kim, S. 1999‘CFD Analysis of Wind Climate From Human to Urban Scale’J. Wind Engin. Ind. Aerodyn815781Google Scholar
  25. Ohashi, Y., Kida, H. 2002‘Local Circulations Developed in the Vicinity of Both Coastal an Inland Urban Areas: A Numerical Study with a Mesoscale Atmospheric Model’J. Appl. Meteorol413045Google Scholar
  26. Oke, T. R. 1987Boundary Layer Climates2Cambridge University PressCambridge435Google Scholar
  27. Tominaga, Y., Mochida, A. 1999‘CFD Prediction of Flowfield and Snowdrift around a Building Complex in a Snowy Region’J. Wind Engin. Ind. Aerodyn81273282Google Scholar
  28. van den Hurk, B. J. J. M., Viterbo, P., Beljaars, A. C. M. and Betts, A. K.: 2000, Offline Validation of the ERA40 Surface Scheme, ECMWF Technical Memoranda 295, 42 pp.Google Scholar
  29. Williams, P. J., Smith, M. W. 1989The Frozen Earth: Fundamentals of GeocryologyCambridge University PressCambridge306Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. J. Best
    • 1
  1. 1.Met OfficeJoint Centre for Hydrometeorological ResearchWallingfordU.K

Personalised recommendations