Advertisement

Boundary-Layer Meteorology

, Volume 115, Issue 2, pp 263–288 | Cite as

An Observational Study of the Mesoscale Mistral Dynamics

  • Vincent Guenard
  • Philippe Drobinski
  • Jean-Luc Caccia
  • Bernard Campistron
  • Bruno Bench
Article

Abstract

We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.

Keywords

Atmospheric boundary layer Gap flow Linear theory Mistral Shallow water theory UHF wind profiler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebischer, U., Schär, C. 1998‘Low-level Potential Vorticity and Cyclogenesis to the Lee of the Alps’J. Atmos. Sci55186207Google Scholar
  2. Bleck, R., Mattocks, C. 1984‘A Preliminary Analysis of the Role of the Potential Vorticity in Alpine Lee Cyclogenesis’Contrib. Atmos. Phys57357368Google Scholar
  3. Blondin, C. and Bret, B.: 1986, ‘Numerical Study of the Mistral with a Mesoscale Model’, in preprint Scientific results of the Alpine experiment (ALPEX), GARP Publication Series, WMO/TD, pp. 549–563. Google Scholar
  4. Bordreuil, C., Barbia, A., and Comte, P.: 1973, ‘Vent du Nord Ouest à Marseille de 1882 à 1970’, Monographie 88 de la Météorologie nationale.Google Scholar
  5. Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Houze, R., Kuettner, J., Smith, R., Steinacker, R, Volkert, H. 2001‘The MAP Special Observing Period’Bull. Amer. Meteorol. Soc82433462Google Scholar
  6. Buzzi, A., Speranza, A. 1986‘A Theory of Deep Cyclogenesis in the Lee of the Alps. Part I: Modifications of Baroclinic Instability by Localized Topography’J. Atmos. Sci4215211535Google Scholar
  7. Buzzi, A., Tibaldi, A. 1978‘Cyclogenesis in the Lee of the Alps: A Case Study’Quart. J. Roy. Meteorol. Soc104271287Google Scholar
  8. Corsmeier, U., Behrendt, R., Drobinski, P., and Kottmeier, C.: 2004, ‘The Mistral and its Effect on Air Pollution Transport and Vertical Mixing’, Atmos. Res., in press. Google Scholar
  9. Cros, B., Durand, P., Cachier, H., Drobinski, P., Fréjafon, E., Kottmeier, C., Perros, P. E., Peuch, V. H., Ponche, J. L., Robin, D., Sa, F., Toupance, G., Wortham, H. 2004‘The ESCOMPTE Program: An Overview’Atmos. Res69241279Google Scholar
  10. Drobinski, P., Dusek, J, Flamant, C 2001a‘Diagnostics of Hydraulic Jump and Gap Flow in Stratified Flows over Topography’Boundary-Layer Meteorol98475495Google Scholar
  11. Drobinski, P., Flamant, C, Dusek, J, Flamant, PH, Pelon, J 2001b‘Observational Evidence and Modelling of an Internal Hydraulic Jump at the Atmospheric Boundary-layer Top during a Tramontane Event’Boundary-Layer Meteorol98497515Google Scholar
  12. Durran, D. 1986‘Another Look at Downslope Windstorms. Part I: The Development of Analogs to Supercritical Flow in an Infinitely Deep Continuously Stratified Fluid’J. Atmos. Sci9325272543Google Scholar
  13. Egger, J. 1972‘Numerical Experiments on the Cyclogenesis in the Gulf of Genoa’Contrib. Atmos. Phys45320346Google Scholar
  14. Egger, J. 1988‘Alpine Lee Cyclogenesis: Verification of Theories’J. Atmos. Sci4521872203Google Scholar
  15. Flamant, C. 2003‘Alpine lee Cyclogenesis Influence on Air–Sea Heat Exchanges and Marine Atmospheric Boundary Layer Thermodynamics over the Western Mediterranean during a Tramontane/Mistral Event’J. Geophys. Res.108(C3)80571029/2001JC001040Google Scholar
  16. Georgelin, M., Richard, E. 1996‘Numerical Simulation of Flow Diversion around the Pyrenees: A Tramontana Case Study’Mon. Wea. Rev124687700Google Scholar
  17. Hoinka, K. P., Hagen, M., Volkert, H., Heimann, D. 1990‘On the Influence of the Alps on a Cold Front’Tellus42A140164Google Scholar
  18. Hoinka, K. P., Richard, E., Poberaj, G., Busen, R., Caccia, J. L., Fix, A., Mannsetein, H. 2003‘Analysis of a Potential Vorticity Streamer Crossing the Alps during MAP IOP-15 on 6 November 1999’Quart. J. Roy. Meteorol. Soc129, 588609632Google Scholar
  19. Jiang, Q., Smith, R. B., Doyle, J. D. 2003‘The Nature of the Mistral: Observations and Modelling of Two MAP Events’Quart. J. Roy. Meteorol. Soc129857876Google Scholar
  20. Long, R. R. 1953‘Some Aspects of the Flow of Stratified Fluids: I. A Theoretical Investigation’Tellus54258CrossRefGoogle Scholar
  21. Mayençon, R.: 1982, Météorologie Pratique, Editions Maritimes D’Outre-Mer, 336 pp. Google Scholar
  22. Millot, C. 1979‘Wind Induced Upwellings in the Gulf of Lions’, OceanolActa2261274Google Scholar
  23. Orieux, A. and Pouget, E.: 1984, ‘Le mistral: Contribution à l’étude de ses aspects synoptiques et régionaux’, Monographie 5 de la Météorologie nationale.Google Scholar
  24. Pettré, P. 1982‘On the Problem of Violent Valley Winds’J. Atmos. Sci39542554Google Scholar
  25. Rhein, M. 1995‘Deep Water Formation in the Western Mediterranean’J. Geophys. Res1069436959Google Scholar
  26. Schär, C., Smith, R. B. 1993‘Shallow-Water Flow Past Isolated Topography. Part I: Vorticity Production and Wave Formation’J. Atmos. Sci5013731400Google Scholar
  27. Smith, R. B. 1985‘On Severe Downslope Winds’J. Atmos. Sci42, 2325972603Google Scholar
  28. Smith, R. B.:1989, ‘Hydrostatic flow over Mountains’, Advances in Geophysics, Vol. 31, Academic Press, 1–41.Google Scholar
  29. Smolarkievicz, P. K., Rotunno, R. 1989‘Low Froude Number Flow Past Three Dimensional Obstacles. Part I: Baroclinically Generated Lee Vortices’J. Atmos. Sci4611541164Google Scholar
  30. Sprenger, M., Schär, C. 2001‘Rotational Aspects of Stratified Gap Flows and Shallow Foehn’Quart. J. Roy. Meteorol. Soc127161188Google Scholar
  31. Tafferner, A., Egger, J. 1990‘Test of Theories of Lee Cyclogenesis: ALPEX Cases’J. Atmos. Sci4724172428Google Scholar
  32. Wrathall, J. E. 1985‘The Mistral and Forest Fires in Provence-Côte d’Azur-South France’Weather40119124Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Vincent Guenard
    • 1
  • Philippe Drobinski
    • 2
  • Jean-Luc Caccia
    • 3
  • Bernard Campistron
    • 4
  • Bruno Bench
    • 4
  1. 1.LSEET-LEPI, CNRSUniversité Sud Toulon-VarLa GardeFrance
  2. 2.SA, CNRSInstitut Pierre Simon LaplaceParisFrance
  3. 3.LSEET-LEPI, CNRS Université Sud Toulon-VarLa GardeFrance
  4. 4.LA, CNRS, Observatoire Midi-PyrénéesUniversité Paul SabatierCampistrousFrance

Personalised recommendations