Boundary-Layer Meteorology

, Volume 114, Issue 3, pp 519–538 | Cite as

Flux-profile Relationships for Wind Speed and Temperature in the Stable Atmospheric Boundary Layer

Article

Abstract

Wind and temperature profiles in the stable boundary layer were analyzed in the context of MoninObukhov similarity. The measurements were made on a 60-m tower in Kansas during October 1999 (CASES-99). Fluxprofile relationships, obtained from these measurements in their integral forms, were established for wind speed and temperature. Use of the integral forms eliminates the uncertainty and accuracy issues resulting from gradient computations. The corresponding stability functions, which were nearly the same for momentum and virtual sensible heat, were found to exhibit different features under weakly stable conditions compared to those under strongly stable conditions. The gradient stability functions were found to be linear, namely φm = 1+ 5.8 ζ and φh = 1 + 5.4 ζ up to a limit of the MoninObukhov stability parameter ζ = 0.8; this is consistent with earlier findings. However, for stronger stabilities beyond a transition range, both functions were observed gradually to approach a constant, with a value of approximately 7. To link these two distinct regimes, a general but pliable functional form with only two parameters is proposed for the stability functions, covering the entire stability range from neutral to very stable conditions.

Keywords

Fluxprofile relations Monin–Obukhov similarity theory Stability functions Stable atmospheric boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljaars, A. C. M., Holtslag, A. A. M. 1991‘Flux Parameterization over Land Surfaces for Atmospheric Models’J. Appl. Meteorol.30327341Google Scholar
  2. Brutsaert, W. 1982Evaporation Into the AtmosphereKluwer Academic PublishersDordrecht299 ppGoogle Scholar
  3. Burns, S. P., Sun, J. 2000‘Thermocouple Temperature Measurements from the CASES-99 Main Tower’ SnowmassCOin 14th Symposium on Boundary Layers and Turbulence 711 August 2000,pp. 358-361Google Scholar
  4. Businger, J. A., Wyngaard, J. C., Izumi, Y. 1971‘Flux Profile Relationships in the Atmospheric Surface Layer’J. Atmos. Sci.28181189Google Scholar
  5. Dias, N. L., Brutsaert, W. 1996‘Similarity of Scalars under Stable Conditions’BoundaryLayer Meteorol.80355373Google Scholar
  6. Dias, N. L., Brutsaert, W., Wesely, M. 1995‘z-Less Stratification under Stable Conditions’BoundaryLayer Meteorol.75175187Google Scholar
  7. Dyer, A. J. 1974‘A Review of FluxProfile Relations’Boundary-Layer Meteorol.1363372Google Scholar
  8. Hicks, B. B. 1976‘Wind Profile Relations from the ‘‘Wangara’’ Experiment’Quart. J. Roy. Meteorol. Soc.102535551Google Scholar
  9. Högström, U. 1988‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’BoundaryLayer Meteorol.425578Google Scholar
  10. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R., Izumi, Y., Caughey, S. J., Readings, C. J. 1976‘Turbulence Structure in the Convective Boundary Layer’J. Atmos. Sci.3321522169Google Scholar
  11. Kondo, J., Kenechika, O., Yasuda, N. 1978‘Heat and Momentum Transfer under Strong Stability in the Atmospheric Surface Layer’J. Atmos. Sci.3510121021Google Scholar
  12. Lumley, J. L., Panofsky, H.A. 1964The Structure of Atmospheric TurbulenceInterscience PublishersU.S.A.239 ppGoogle Scholar
  13. Mahrt, L. 1998‘Stratified Atmospheric Boundary Layers and Breakdown of Models’J. Theor. Comp. Fluid Dyn.11263280Google Scholar
  14. Mahrt, L. 1999‘Stratified Atmospheric Boundary Layers’BoundaryLayer Meteorol.90375396Google Scholar
  15. Mahrt, L., Vickers, D. 2002‘Contrasting Vertical Structures of Nocturnal Boundary Layers’BoundaryLayer Meteorol.105351363Google Scholar
  16. Mahrt, L., Sun, J., Blumen, W., Delany, A., McClean, G., Oncley, S. 1998‘Nocturnal Boundary-Layer Regimes’BoundaryLayer Meteorol.88255278Google Scholar
  17. Pahlow, M., Parlange, M. B., Porte-Agel, F. 2001‘On MoninObukhov Similarity in the Stable Atmospheric Boundary Layer’BoundaryLayer Meteorol.99225248Google Scholar
  18. Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E., Balsley, B., Jensen, M. 2002‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’Bull. Amer. Meteorol. Soc.83555581Google Scholar
  19. Sugita, M., Brutsaert, W. 1992‘The Stability Functions in the Bulk Similarity Formulation for the Unstable Boundary Layer’BoundaryLayer Meteorol.616580Google Scholar
  20. Sugita, M., Brutsaert, W. 1996‘Optimal Measurement Strategy for Surface Temperature to Determine Sensible Heat Flux from Anisothermal Vegetation’Water Resour. Res.3221292134Google Scholar
  21. Webb, E. K. 1970‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’Quart. J. Roy. Meteorol. Soc.966790Google Scholar
  22. Wyngaard, J. C. 1973‘On Surface-Layer Turbulence’Haugen, D.A. eds. Workshop on MicrometeorologyAmerican Meteorological SocietyBoston101149Google Scholar
  23. Wyngaard, J. C., Cote, O. R., Izumi, Y. 1971‘Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux’J. Atmos. Sci.28190201Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of Civil and Environmental EngineeringCornell UniversityIthacaU.S.A.

Personalised recommendations