Boundary-Layer Meteorology

, Volume 114, Issue 2, pp 439–460

Parameterizing turbulent exchange over sea ice: the ice station weddell results

  • Edgar L Andreas
  • Rachel E. Jordan
  • Aleksandar P. Makshtas


A 4-month deployment on Ice Station Weddell (ISW) in the western Weddell Sea yielded over 2000 h of nearly continuous surface-level meteorological data, including eddy-covariance measurements of the turbulent surface fluxes of momentum, and sensible and latent heat. Those data lead to a new parameterization for the roughness length for wind speed, z0, for snow-covered sea ice that combines three regimes: an aerodynamically smooth regime, a high-wind saltation regime, and an intermediate regime between these two extremes where the macroscale or `permanent' roughness of the snow and ice determines z0. Roughness lengths for temperature, zT, computed from this data set corroborate the theoretical model that Andreas published in 1987. Roughness lengths for humidity,zQ, do not support this model as conclusively but are all, on average, within an order of magnitude of its predictions. Only rarely arezTand zQ equal to z0. These parameterizations have implications for models that treat the atmosphere-ice-ocean system.

Air–sea–ice interaction Eddy-covariance measurements Ice Station Weddell Roughness lengths Sea Ice Turbulent surface fluxes. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E. L: 1987, 'A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice', Boundary-Layer Meteorol. 38, 159–184.Google Scholar
  2. Andreas, E. L: 1995, 'Air-Ice Drag Coefficients in the Western Weddell Sea: 2. A Model Based on Form Drag and Drifting Snow', J. Geophys. Res. 100, 4833–4843.Google Scholar
  3. Andreas, E. L: 2002, 'Parameterizing Scalar Transfer over Snow and Sea Ice: A Review', J. Hydrometeorol. 3, 417–432.Google Scholar
  4. Andreas, E. L and Cash, B. A.: 1996, 'A New Formulation for the Bowen Ratio over Satu-rated Surfaces', J. Appl. Meteorol. 35, 1279–1289.Google Scholar
  5. Andreas, E. L and Claffey, K. J.: 1995, 'Air-Ice Drag Coefficients in the Western Weddell Sea: 1. Values Deduced from Pro le Measurements', J. Geophys. Res. 100, 4821–4831.Google Scholar
  6. Andreas, E. L and Treviño, G.: 1996, 'Detrending Turbulent Time Series with Wavelets', in G. Treviño, J. Hardin, B. Douglas, and E. Andreas (eds. ), Current Topics in Nonstationary Analysis, World Scientific, Singapore, River Edge, NJ, pp. 35–73.Google Scholar
  7. Andreas, E. L and Treviño, G.: 1997, 'Using Wavelets to Detect Trends', J. Atmos. Oceanic Tech. 14, 554–564.Google Scholar
  8. Andreas, E. L, Claffey, K. J., and Makshtas, A. P.: 2000, 'Low-Level Atmospheric Jets and Inversions over the Western Weddell Sea', Boundary-Layer Meteorol. 97, 459–486.Google Scholar
  9. Andreas, E. L, Fairall, C. W., Grachev, A. A., Guest, P. S., Horst, T. W., Jordan, R. E., and Persson, P. O. G.: 2003, 'Turbulent Transfer Coefficients and Roughness Lengths over Sea Ice: The SHEBA Results', in CD-ROM of preprints, 7th Conference on Polar Meteorology and Oceanography, 12–16 May 2003, Hyannis, MA, American Meteorological Society, 9 pp.Google Scholar
  10. Andreas, E. L, Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 2001, 'The Air-Ice Drag Coefficient for a Year over Arctic Sea Ice', in Preprint Volume, 6th Conference on Polar Meteorology and Oceanography, 14–18 May 2001, San Diego, CA, American Meteoro-logical Society, pp. 300–303.Google Scholar
  11. Andreas, E. L, Hill, R. J., Gosz, J. R., Moore, D. I., Otto, W. D., and Sarma, A. D.: 1998, 'Statistics of Surface-Layer Turbulence over Terrain with Meter-Scale Heterogeneity', Boundary-Layer Meteorol. 86, 379–408.Google Scholar
  12. Andreas, E. L, Jordan, R. E., Guest, P. S., Persson, P. O. G., Grachev, A. A., and Fairall, C. W.: 2004, 'Roughness Lengths over Snow', in CD-ROM of preprints, 18th Conference on Hydrology, 11–15 January 2004, Seattle, WA, American Meteorological Society, 8 pp.Google Scholar
  13. Andreas, E. L, Jordan, R. E., and Makshtas, A. P.: 2004, 'Simulations of Snow, Ice, and Near-Surface Atmospheric Processes on Ice Station Weddell', J. Hydrometeorol., in press.Google Scholar
  14. Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: 1988, 'Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods', Ecology 69, 1331–1340.Google Scholar
  15. Banke, E. G., Smith, S. D., and Anderson, R. J.: 1980, 'Drag Coefficients at AIDJEX from Sonic Anemometer Measurements', in R. S. Pritchard (ed. ), Sea Ice Processes and Models, University of Washington Press, Seattle, pp. 430–442.Google Scholar
  16. Bintanja, R.: 2002, 'A New Power-Law Relation for the Vertical Distribution of Suspended Matter', Boundary-Layer Meteorol. 104, 305–317.Google Scholar
  17. Bintanja, R. and Reijmer, C. H.: 2001, 'A Simple Parameterization for Snowdrift Sublimation over Antarctic Snow Surfaces', J. Geophys. Res. 106, 31739–31748.Google Scholar
  18. Bintanja, R. and Van den Broeke, M. R.: 1995, 'Momentum and Scalar Transfer Coefficients over Aerodynamically Smooth Antarctic Surfaces', Boundary-Layer Meteorol. 74, 89–111.Google Scholar
  19. Bohren, C. F. and Albrecht, B. A.: 1998, Atmospheric Thermodynamics, Oxford University Press, New York, 402 pp.Google Scholar
  20. Bradley, E. F., Coppin, P. A., and Godfrey, J. S.: 1991, 'Measurements of Sensible and Latent Heat Flux in the Western Equatorial Pacific Ocean', J. Geophys. Res. 96, 3375–3389.Google Scholar
  21. Buck, A. L.: 1976, 'The Variable-Path Lyman-Alpha Hygrometer and its Operating Char-acteristics', Bull. Amer. Meteorol. Soc. 57, 1113–1118.Google Scholar
  22. Buck, A. L.: 1977, 'Lyman-Alpha Radiation Source with High Spectral Purity', Appl. Optics 16, 2634–2636.Google Scholar
  23. Chamberlain, A. C.: 1983, 'Roughness Length of Sea, Sand, and Snow', Boundary-Layer Meteorol. 25, 405–409.Google Scholar
  24. Charnock, H.: 1955, 'Wind Stress on a Water Surface', Quart. J. Roy. Meteorol. Soc. 81, 639.Google Scholar
  25. DeCosmo, J., Katsaros, K. B., Smith, S. D., Anderson, R. J., Oost, W. A., Bumke, K., and Chadwick, H.: 1996, 'Air-Sea Exchange of Water Vapor and Sensible Heat: The Humidity Exchange over the Sea (HEXOS)Results', J. Geophys. Res. 101, 12001–12016.Google Scholar
  26. Dozier, J. and Warren, S. G.: 1982, 'Effect of Viewing Angle on the Infrared Brightness Temperature of Snow', Water Resour. Res. 18, 1424–1434.Google Scholar
  27. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: 1996, 'Bulk Parameterization of Air-Sea Fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment', J. Geophys. Res. 101, 3747–3764.Google Scholar
  28. Fairall, C. W., Hare, J. E., Edson, J. B., and McGillis, W.: 2000, 'Parameterization and Micrometeorological Measurement of Air-Sea Gas Transfer', Boundary-Layer Meteorol. 96, 63–105.Google Scholar
  29. Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A.: 2003, 'A Re-Eval-uation of Long-Term Flux Measurement Techniques. Part I: Averaging and Coordinate Rotation', Boundary-Layer Meteorol. 107, 1–48.Google Scholar
  30. Foken, Th. and Wichura, B.: 1996, 'Tools for Quality Assessment of Surface-Based Flux Measurements', Agric. For. Meteorol. 78, 83–105.Google Scholar
  31. Fuehrer, P. L. and Friehe, C. A.: 2002, 'Flux Corrections Revisited', Boundary-Layer Mete-orol. 102, 415–457.Google Scholar
  32. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cam-bridge, New York, 316 pp.Google Scholar
  33. Garratt, J. R. and Hicks, B. B.: 1973, 'Momentum, Heat and Water Vapour Transfer to and from Natural and Arti cial Surfaces', Quart. J. Roy. Meteorol. Soc. 99, 680–687.Google Scholar
  34. Geernaert, G. L., Davidson, K. L., Larsen, S. E., and Mikkelsen, T.: 1988, 'Wind Stress Measurements during the Tower Ocean Wave and Radar Dependence Experiment', J. Geophys. Res. 93, 13913–13923.Google Scholar
  35. Gordon, A. L. and Lukin, V. V.: 1992, 'Ice Station Weddell #1', Antarct. J. U. S. 27(5), 97–99.Google Scholar
  36. Guest, P. S. and Davidson, K. L.: 1991, 'The Aerodynamic Roughness of Different Types of Sea Ice', J. Geophys. Res. 96, 4709–4721.Google Scholar
  37. Hicks, B. B. and Martin, H. C.: 1972, 'Atmospheric Turbulent Fluxes over Snow', Boundary-Layer Meteorol. 2, 496–502.Google Scholar
  38. Holtslag, A. A. M. and De Bruin, H. A. R.: 1988, 'Applied Modeling of the Nighttime Surface Energy Balance over Land', J. Appl. Meteorol. 27, 689–704.Google Scholar
  39. ISW Group: 1993, 'Weddell Sea Exploration from Ice Station', Eos, Trans. Amer. Geophys. Union 74, 121–126.Google Scholar
  40. Joffre, S. M.: 1982, 'Momentum and Heat Transfers in the Surface Layer over a Frozen Sea', Boundary-Layer Meteorol. 24, 211–229.Google Scholar
  41. Jordan, R. E., Andreas, E. L, and Makshtas, A. P.: 1999, 'Heat Budget of Snow-Covered Sea Ice at North Pole 4', J. Geophys. Res. 104, 7785–7806.Google Scholar
  42. Jordan, R. E., Andreas, E. L, and Makshtas, A. P.: 2001, 'Modeling the Surface Energy Budget and the Temperature Structure of Snow and Brine-Snow at Ice Station Weddell', in Preprint Volume, 6th Conference on Polar Meteorology and Oceanography, 14–18 May 2001, San Diego, CA, American Meteorological Society, pp. 129–132.Google Scholar
  43. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp.Google Scholar
  44. Kaimal, J. C. and Gaynor, J. E.: 1991, 'Another Look at Sonic Thermometry', Boundary-Layer Meteorol. 56, 401–410.Google Scholar
  45. Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., and Zimmerman, G. A.: 1990, 'Minimizing Flow Distortion Errors in a Sonic Anemometer', Boundary-Layer Meteorol. 53, 103–115.Google Scholar
  46. King, J. C. and Anderson, P. S.: 1994, 'Heat and Water Vapour Fluxes and Scalar Roughness Lengths over an Antarctic Ice Shelf', Boundary-Layer Meteorol. 69, 101–121.Google Scholar
  47. Kitaigorodskii, S. A. and Volkov, and Yu, A.: 1965, 'On the Roughness Parameter of the Sea Surface and the Calculation of Momentum Flux in the Near-Water Layer of the Atmo-sphere', Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 566–574.Google Scholar
  48. Larsen, S. E., Edson, J. B., Fairall, C. W., and Mestayer, P. G.: 1993, 'Measurement of Temperature Spectra by a Sonic Anemometer', J. Atmos. Oceanic Tech. 10, 345–354.Google Scholar
  49. Larsen, S. E., Yelland, M., Taylor, P., Jones, I. S. F., Hasse, L., and Brown, R. A.: 2001, 'The Measurement of Surface Stress', in I. S. F. Jones and Y. Toba (eds. ), Wind Stress over the Ocean, Cambridge University Press, Cambridge, New York, 155–180.Google Scholar
  50. Launiainen, J. and Vihma, T.: 1990, 'Derivation of Turbulent Surface Fluxes–An Iterative Flux-Pro le Method Allowing Arbitrary Observing Heights', Environ. Software 5, 113–124.Google Scholar
  51. Makshtas, A. P., Timachev, V. F., and Andreas, E. L: 1998, 'Structure of the Lower Atmos-pheric Layer over Ice Cover of the Weddell Sea', Russian Meteorol. Hydrol. 10, 68–75.Google Scholar
  52. Makshtas, A. P., Andreas, E. L, Svyashchennikov, P. N., and Timachev, V. F.: 1999, 'Accounting for Clouds in Sea Ice Models', Atmos. Res. 52, 77–113.Google Scholar
  53. McMillen, R. T.: 1988, 'An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain', Boundary-Layer Meteorol. 43, 231–245.Google Scholar
  54. Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, MA, 769 pp.Google Scholar
  55. Munro, D. S.: 1989, 'Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation', J. Glaciol. 35, 343–348.Google Scholar
  56. Overland, J. E.: 1985, 'Atmospheric Boundary Layer Structure and Drag Coefficients over Sea Ice', J. Geophys. Res. 90, 9029–9049.Google Scholar
  57. Owen, P. R.: 1964, 'Saltation of Uniform Grains in Air', J. Fluid Mech. 20, 225–242.Google Scholar
  58. Paulson, C. A.: 1970, 'The Mathematical Representation of Wind Speed and Temperature Pro les in the Unstable Atmospheric Surface Layer', J. Appl. Meteorol. 9, 857–861.Google Scholar
  59. Persson, P. O. G., Fairall, C. W., Andreas, E. L, Guest, P. S., and Perovich, D. K.: 2002, 'Measurements near the Atmospheric Surface Flux Group Tower at SHEBA: Near-Surface Conditions and Surface Energy Budget', J. Geophys. Res. 107 (C10), DOI 10. 1029/ 2000JC000705.Google Scholar
  60. Pomeroy, J. W. and Gray, D. M.: 1990, 'Saltation of Snow', Water Resour. Res. 26, 1583–1594.Google Scholar
  61. Radok, U.: 1968, Deposition and Erosion of Snow by the Wind, Research Report 230, U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 23 pp.Google Scholar
  62. Raupach, M. R.: 1991, 'Saltation Layers, Vegetation Canopies and Roughness Lengths', Acta Mech. (Suppl. )1, 83–96.Google Scholar
  63. Schotanus, P., Nieuwstadt, F. T. M., and De Bruin, H. A. R.: 1983, 'Temperature Meas-urements with a Sonic Anemometer and its Application to Heat and Moisture Fluxes', Boundary-Layer Meteorol. 26, 81–93.Google Scholar
  64. Smith, S. D.: 1988, 'Coefficients for Sea Surface Wind Stress, Heat Flux, and Wind Pro les as a Function of Wind Speed and Temperature', J. Geophys. Res. 93, 15467–15472.Google Scholar
  65. Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, MA, 300 pp.Google Scholar
  66. Thorpe, M. R., Banke, E. G., and Smith, S. D.: 1973, 'Eddy Correlation Measurements of Evaporation and Sensible Heat Flux over Arctic Sea Ice', J. Geophys. Res. 78, 3573–3584.Google Scholar
  67. Warren, S. G.: 1982, 'Optical Properties of Snow', Rev. Geophys. Space Phys. 20, 67–89.Google Scholar
  68. Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, 'Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour', Quart. J. Roy. Meteorol. Soc. 106, 85– 100.Google Scholar
  69. Zilitinkevich, S. S.: 1969, 'On the Computation of the Basic Parameters of the Interaction between the Atmosphere and the Ocean', Tellus 21, 17–24.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Edgar L Andreas
    • 1
  • Rachel E. Jordan
    • 1
  • Aleksandar P. Makshtas
    • 2
    • 3
  1. 1.U.S. Army Cold Regions Research and Engineering LaboratoryNew HampshireU.S.A.
  2. 2.International Arctic Research CenterAlaskaU.S.A.
  3. 3.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations