Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 6, pp 1147–1158 | Cite as

Cerebrospinal fluid monoamines, pterins, and folate in patients with mitochondrial diseases: systematic review and hospital experience

  • Marta Batllori
  • Marta Molero-Luis
  • Aida Ormazabal
  • Raquel Montero
  • Cristina Sierra
  • Antonia Ribes
  • Julio Montoya
  • Eduardo Ruiz-Pesini
  • Mar O’Callaghan
  • Leticia Pias
  • Andrés Nascimento
  • Francesc. Palau
  • Judith Armstrong
  • Delia Yubero
  • Juan D. Ortigoza-Escobar
  • Angels García-Cazorla
  • Rafael ArtuchEmail author
Original Article

Abstract

Mitochondrial diseases are a group of genetic disorders leading to the dysfunction of mitochondrial energy metabolism pathways. We aimed to assess the clinical phenotype and the biochemical cerebrospinal fluid (CSF) biogenic amine profiles of patients with different diagnoses of genetic mitochondrial diseases. We recruited 29 patients with genetically confirmed mitochondrial diseases harboring mutations in either nuclear or mitochondrial DNA (mtDNA) genes. Signs and symptoms of impaired neurotransmission and neuroradiological data were recorded. CSF monoamines, pterins, and 5-methyltetrahydrofolate (5MTHF) concentrations were analyzed using high-performance liquid chromatography with electrochemical and fluorescence detection procedures. The mtDNA mutations were studied by Sanger sequencing, Southern blot, and real-time PCR, and nuclear DNA was assessed either by Sanger or next-generation sequencing. Five out of 29 cases showed predominant dopaminergic signs not attributable to basal ganglia involvement, harboring mutations in different nuclear genes. A chi-square test showed a statistically significant association between high homovanillic acid (HVA) values and low CSF 5-MTHF values (chi-square = 10.916; p = 0.001). Seven out of the eight patients with high CSF HVA values showed cerebral folate deficiency. Five of them harbored mtDNA deletions associated with Kearns-Sayre syndrome (KSS), one had a mitochondrial point mutation at the mtDNA ATPase6 gene, and one had a POLG mutation. In conclusion, dopamine deficiency clinical signs were present in some patients with mitochondrial diseases with different genetic backgrounds. High CSF HVA values, together with a severe cerebral folate deficiency, were observed in KSS patients and in other mtDNA mutation syndromes.

Notes

Acknowledgements

The Departments of Clinical Biochemistry and Genetics are part of the “Centre Daniel Bravo de Diagnòstic i Recerca en Malalties Minoritàries.” We are indebted to the Spanish Association of Mitochondrial Patients (AEPMI) and the Fundación Carolina Diaz-Mahou.

Funding

This work was supported by grants from the Instituto de Salud Carlos III (ISCIII-FIS PI17/00109, PI17/00021 and PI15/01082), the FEDER Funding Program from the European Union, and CIBERER-ISCIII.

Compliance with ethical standards

Conflict of interest

M. Batllori, M. Molero-Luis, A. Ormazabal, R. Montero, C. Sierra, A. Ribes, J. Montoya, E. Ruiz-Pesini, M. O’Callaghan, L. Pias, A. Nascimento, F. Palau, J. Armstrong, D. Yubero, J. D. Ortigoza-Escobar, A. García-Cazorla, and R. Artuch declare that they have no conflict of interest.

References

  1. Alebouyeh M, Takeda M, Onozato ML et al (2003) Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci 93:430–436CrossRefGoogle Scholar
  2. Allen RJ, DiMauro S, Coulter DL, Papadimitriou A, Rothenberg SP (1983) Kearns-Sayre syndrome with reduced plasma and cerebrospinal fluid folate. Ann Neurol 13:679–682CrossRefGoogle Scholar
  3. Asencio C, Rodríguez-Hernandez MA et al (2016) Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content. Eur J Hum Genet 24:367–372CrossRefGoogle Scholar
  4. Aylett SB, Neergheen V, Hargreaves IP et al (2013) Levels of 5-methyltetrahydrofolate and ascorbic acid in cerebrospinal fluid are correlated: implications for the accelerated degradation of folate by reactive oxygen species. Neurochem Int 63:750–755CrossRefGoogle Scholar
  5. Brito S, Thompson K, Campistol J et al (2015) Long-term survival in a child with severe encephalopathy, multiple respiratory chain deficiency and GFM1 mutations. Front Genet 6:102.  https://doi.org/10.3389/fgene.2015.00102. Google Scholar
  6. Carlsson A (2001) A paradigm shift in brain research. Science 294:1021–1024CrossRefGoogle Scholar
  7. De Grandis E, Serrano M, Pérez-Dueñas B et al (2010) Cerebrospinal fluid alterations of the serotonin product, 5- hydroxyindolacetic acid, in neurological disorders. J Inherit Metab Dis 33:803–809CrossRefGoogle Scholar
  8. Dougados M, Zittoun J, Laplane D, Castaigne P (1983) Folate metabolism disorder in Kearns-Sayre syndrome. Ann Neurol 13:687CrossRefGoogle Scholar
  9. García-Cazorla A, Serrano M, Pérez-Dueñas B et al (2007) Secondary abnormalities of neurotransmitters in infants with neurological disorders. Dev Med Child Neurol 49:740–744CrossRefGoogle Scholar
  10. Garcia-Cazorla A, Duarte S, Serrano M et al (2008a) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8:273–278CrossRefGoogle Scholar
  11. Garcia-Cazorla A, Quadros EV, Nascimento A et al (2008b) Mitochondrial diseases associated with cerebral folate deficiency. Neurology 70:1360–1362CrossRefGoogle Scholar
  12. Ghaoui R, Sue CM (2018) Movement disorders in mitochondrial disease. J Neurol 265:1230–1240CrossRefGoogle Scholar
  13. Grapp M, Wrede A, Schweizer M et al (2013) Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123CrossRefGoogle Scholar
  14. Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett 589:3702–3713CrossRefGoogle Scholar
  15. Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M (2010) Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab 99:58–61CrossRefGoogle Scholar
  16. Horvath GA, Demos M, Shyr C et al (2016) Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: a potential treatment target? Mol Genet Metab 117:42–48CrossRefGoogle Scholar
  17. Hyland K, Surtees RA, Heales SJ, Bowron A, Howells DW, Smith I (1993) Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res 34:10–14CrossRefGoogle Scholar
  18. Invernizzi F, Varanese S, Thomas A, Carrara F, Onofrj M, Zeviani M (2008) Two novel POLG1 mutations in a patient with progressive external ophthalmoplegia, levodopa-responsive pseudo-orthostatic tremor and parkinsonism. Neuromuscul Disord 18:460–464CrossRefGoogle Scholar
  19. Kurian MA, Gissen P, Smith M, Heales S Jr, Clayton PT (2011) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10:721–733CrossRefGoogle Scholar
  20. Kuster A, Arnoux JB, Barth M et al (2018) Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles. J Inherit Metab Dis 41:129–139CrossRefGoogle Scholar
  21. Ly CV, Verstreken P (2006) Mitochondria at the synapse. Neuroscientist 12:291–299CrossRefGoogle Scholar
  22. Marecos C, Ng J, Kurian MA (2014) What is new for monoamine neurotransmitter disorders? J Inherit Metab Dis 37:619–626CrossRefGoogle Scholar
  23. Miguel R, Gago MF, Martins J (2014) POLG1-related levodopa-responsive parkinsonism. Clin Neurol Neurosurg 126:47–54CrossRefGoogle Scholar
  24. Molero-Luis M, Fernández-Ureña S, Jordán I et al (2013a) Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes. PLoS One 8:e83237CrossRefGoogle Scholar
  25. Molero-Luis M, Serrano M, Ormazábal A et al (2013b) Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Dev Med Child Neurol 55:559–566CrossRefGoogle Scholar
  26. Montiel-Sosa JF, Herrero MD, Munoz M de L et al (2013) Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion. Mitochondrial DNA 24:420–431CrossRefGoogle Scholar
  27. Moran MM, Allen NM, Treacy EP, King MD (2011) “Stiff neonate” with mitochondrial DNA depletion and secondary neurotransmitter defects. Pediatr Neurol 45:403–405CrossRefGoogle Scholar
  28. Mori S, Takanaga H, Ohtsuki S et al (2003) Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23:432–440CrossRefGoogle Scholar
  29. Moy LY, Wang SP, Sonsalla PK (2007) Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves the dopamine transporter. J Pharmacol Exp Ther 320:747–756CrossRefGoogle Scholar
  30. Murthy VN, De Camilli P (2003) Cell biology of the presynaptic terminal. Annu Rev Neurosci 26:701–728CrossRefGoogle Scholar
  31. Ng J, Papandreou A, Heales SJ, Kurian MA (2015) Monoamine neurotransmitter disorders–clinical advances and future perspectives. Nat Rev Neurol 11:567–584CrossRefGoogle Scholar
  32. O'Callaghan MM, Emperador S, Pineda M et al (2015) Mutation loads in different tissues from six pathogenic mtDNA point mutations. Mitochondrion 22:17–22CrossRefGoogle Scholar
  33. Orešković D, Radoš M, Klarica M (2017) Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 354:69–87CrossRefGoogle Scholar
  34. Ormazabal A, García-Cazorla A, Fernández Y, Fernández-Alvarez E, Campistol J, Artuch R (2005) HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J Neurosci Methods 142:153–158CrossRefGoogle Scholar
  35. Ormazabal A, García-Cazorla A, Pérez-Dueñas B et al (2006) Determination of 5-methyltetrahydrofolate in cerebrospinal fluid of paediatric patients: reference values for a paediatric population. Clin Chim Acta 371:159–162CrossRefGoogle Scholar
  36. Ortigoza-Escobar JD, Molero-Luis M, Arias A et al (2016) Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain 139:31–38CrossRefGoogle Scholar
  37. Pearl PL, Capp PK, Novotny EJ, Gibson KM (2005) Inherited disorders of neurotransmitters in children and adults. Clin Biochem 38:1051–1058CrossRefGoogle Scholar
  38. Pérez-Dueñas B, Ormazábal A, Toma C et al (2011) Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch Neurol 68:615–621CrossRefGoogle Scholar
  39. Pineda M, Ormazabal A, Lopez-Gallardo E et al (2006) Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann Neurol 59:394–398CrossRefGoogle Scholar
  40. Ramaekers VT, Blau N (2004) Cerebral folate deficiency. Dev Med Child Neurol 46:843–851CrossRefGoogle Scholar
  41. Ramaekers VT, Weis J, Sequeira JM, Quadros EV, Blau N (2007) Mitochondrial complex I encephalomyopathy and cerebral 5-methyltetrahydrofolate deficiency. Neuropediatrics 38:184–187CrossRefGoogle Scholar
  42. Rodan LH, Gibson KM, Pearl PL (2015) Clinical use of CSF neurotransmitters. Pediatr Neurol 53:277–286CrossRefGoogle Scholar
  43. Serrano M, García-Silva MT, Martin-Hernandez E et al (2010) Kearns-Sayre syndrome: cerebral folate deficiency, MRI findings and new cerebrospinal fluid biochemical features. Mitochondrion 10:429–432CrossRefGoogle Scholar
  44. Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112:13–23CrossRefGoogle Scholar
  45. Spector R, Johanson CE (2010) Choroid plexus failure in the Kearns-Sayre syndrome. Cerebrospinal Fluid Res 7:14CrossRefGoogle Scholar
  46. Tanji K, Schon EA, DiMauro S, Bonilla E (2000) Kearns-Sayre syndrome: oncocytic transformation of choroid plexus epithelium. J Neurol Sci 178:29–36CrossRefGoogle Scholar
  47. Tondo M, Málaga I, O'Callaghan M et al (2011) Biochemical parameters to assess choroid plexus dysfunction in Kearns-Sayre syndrome patients. Mitochondrion 11:867–870CrossRefGoogle Scholar
  48. Tzoulis C, Tran GT, Schwarzlmüller T et al (2013) Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain 136:2393–2404CrossRefGoogle Scholar
  49. Tzoulis C, Schwarzlmüller T, Biermann M, Haugarvoll K, Bindoff LA (2016) Mitochondrial DNA homeostasis is essential for nigrostriatal integrity. Mitochondrion 28:33–37CrossRefGoogle Scholar
  50. Van Der Heyden JC, Rotteveel JJ, Wevers RA et al (2003) Decreased homovanillic acid concentrations in cerebrospinal fluid in children without a known defect in dopamine metabolism. Eur J Paediatr Neurol 7:31–37CrossRefGoogle Scholar
  51. Yubero D, Brandi N, Ormazabal A et al (2016) Targeted next generation sequencing in patients with inborn errors of metabolism. PLoS One 11:e0156359CrossRefGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • Marta Batllori
    • 1
  • Marta Molero-Luis
    • 1
  • Aida Ormazabal
    • 1
    • 2
  • Raquel Montero
    • 1
    • 2
  • Cristina Sierra
    • 1
  • Antonia Ribes
    • 2
    • 3
  • Julio Montoya
    • 2
    • 4
  • Eduardo Ruiz-Pesini
    • 2
    • 4
  • Mar O’Callaghan
    • 2
    • 5
  • Leticia Pias
    • 5
  • Andrés Nascimento
    • 2
    • 5
  • Francesc. Palau
    • 2
    • 6
  • Judith Armstrong
    • 2
    • 6
  • Delia Yubero
    • 2
    • 6
  • Juan D. Ortigoza-Escobar
    • 5
  • Angels García-Cazorla
    • 2
    • 5
  • Rafael Artuch
    • 1
    • 2
    • 7
    Email author return OK on get
  1. 1.Clinical BiochemistryInstitut de Recerca Sant Joan de DéuBarcelonaSpain
  2. 2.CIBERER, Instituto de Salud Carlos IIIBarcelonaSpain
  3. 3.Institut de Bioquímica Clínica-Corporació Sanitaria ClínicBarcelonaSpain
  4. 4.Biochemistry, Cellular and Molecular Biology DepartmentUniversidad de ZaragozaZaragozaSpain
  5. 5.Pediatric NeurologyInstitut de Recerca Sant Joan de DéuBarcelonaSpain
  6. 6.Genetics DepartmentInstitut de Recerca Sant Joan de DéuBarcelonaSpain
  7. 7.Clinical Biochemistry Department, IRSJD and CIBERERHospital Sant Joan de DéuEsplugues de LlobregatSpain

Personalised recommendations