Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 6, pp 1117–1122 | Cite as

Lipids and synaptic functions

  • Fanny Mochel
Review

Abstract

Synaptic functions have long been thought to be driven by proteins, especially the SNARE complex, contrasting with a relatively passive role for lipids constituting cell membranes. It is now clear that not only lipids, i.e. glycerophospholipids, sphingolipids and sterols, play a determinant role in the dynamics of synaptic membranes but they also actively contribute to the endocytosis and exocytosis of synaptic vesicles in conjunction with synaptic proteins. On the other hand, a growing number of inborn errors of metabolism affecting the nervous system have been related to defects in the synthesis and remodelling of fatty acids, phospholipids and sphingolipids. Alterations of the metabolism of these lipids would be expected to affect the dynamics of synaptic membranes and synaptic vesicles. Still, only few examples are currently documented. It remains to be determined to which extent the pathophysiology of disorders of complex lipids biosynthesis and remodelling share common pathogenic mechanisms with the more traditional synaptopathies.

Notes

Acknowledgements

The author is very grateful to Pr Jean-Marie Saudubray and Dr. Foudil Lamari for their pioneering and invaluable contribution to the delineation of the novel class of inborn errors of metabolism represented by disorders of complex lipids biosynthesis and remodelling.

Compliance with ethical standards

Details of ethics approval

No ethics approval was required.

Patient consent statement

Patient consent was not required.

Conflict of interest

Fanny Mochel declares that she has no conflict of interest.

References

  1. Boukhris A, Schule R, Loureiro JL et al (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93:118–123CrossRefPubMedCentralGoogle Scholar
  2. Bruckner RJ, Mansy SS, Ricardo A et al (2009) Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys J 97:3113–3122CrossRefPubMedCentralGoogle Scholar
  3. Cortès-Saladelafont E, Tristán-Noguero A, Artuch R et al (2016) Diseases of the synaptic vesicle: a potential new group of neurometabolic disorders affecting neurotransmission. Semin Pediatr Neurol 23:306–320CrossRefGoogle Scholar
  4. Darios F, Connell E, Davletov B (2007) Phospholipases and fatty acid signalling in exocytosis. J Physiol 585:699–704CrossRefPubMedCentralGoogle Scholar
  5. Darios F, Wasser C, Shakirzyanova A et al (2009) Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 62:683–694CrossRefPubMedCentralGoogle Scholar
  6. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657CrossRefGoogle Scholar
  7. Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification of lipids. J Lipid Res 46:839–861CrossRefGoogle Scholar
  8. Fiskerstrand T, H'mida-Ben Brahim D, Johansson S et al (2010) Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am J Hum Genet 87:410–417CrossRefPubMedCentralGoogle Scholar
  9. Garcia-Cazorla À, Mochel F, Lamari F et al (2015) The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 38:19–40CrossRefGoogle Scholar
  10. Hammer MB, Eleuch-Fayache G, Schottlaender LV et al (2013) Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 92:245–251CrossRefPubMedCentralGoogle Scholar
  11. Hammond GR, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta 1851:746–758CrossRefPubMedCentralGoogle Scholar
  12. Hoover-Fong J, Sobreira N, Jurgens J et al (2014) Mutations in PCYT1A, encoding a key regulator of phosphatidylcholine metabolism, cause spondylometaphyseal dysplasia with cone-rod dystrophy. Am J Hum Genet 94:105–112CrossRefPubMedCentralGoogle Scholar
  13. Illingworth MA, Meyer E, Chong WK et al (2014) PLA2G6-associated neurodegeneration (PLAN): further expansion of the clinical, radiological and mutation spectrum associated with infantile and atypical childhood-onset disease. Mol Genet Metab 112:183–189CrossRefPubMedCentralGoogle Scholar
  14. Klouwer FCC, Ferdinandusse S, van Lenthe H et al (2017) Evaluation of C26:0-lysophosphatidylcholine and C26:0-carnitine as diagnostic markers for Zellweger spectrum disorders. J Inherit Metab Dis 40:875–881CrossRefGoogle Scholar
  15. Krebs CE, Karkheiran S, Powell JC et al (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34:1200–1207CrossRefPubMedCentralGoogle Scholar
  16. Kruer MC, Paisán-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–618CrossRefPubMedCentralGoogle Scholar
  17. Lamari F, Mochel F, Sedel F et al (2013) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis 36:411–425CrossRefGoogle Scholar
  18. Lamari F, Mochel F, Saudubray JM (2015) An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis 38:3–18CrossRefGoogle Scholar
  19. Lang T, Bruns D, Wenzel D et al (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213CrossRefPubMedCentralGoogle Scholar
  20. Lauwers E, Goodchild R, Verstreken P (2016) Membrane lipids in presynaptic function and disease. Neuron 90:11–25CrossRefGoogle Scholar
  21. Lefèvre C, Jobard F, Caux F et al (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet 69:1002–1012CrossRefPubMedCentralGoogle Scholar
  22. Martin E, Schüle R, Smets K et al (2013) Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 92:238–244CrossRefPubMedCentralGoogle Scholar
  23. Mitsuhashi S, Ohkuma A, Talim B et al (2011) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet 88:845–851CrossRefPubMedCentralGoogle Scholar
  24. Mitter D, Reisinger C, Hinz B et al (2003) The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. J Neurochem 84:35–42CrossRefGoogle Scholar
  25. Mosbech MB, Olsen AS, Neess D et al (2014) Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Ann Clin Transl Neurol. 1: 88–98Google Scholar
  26. Narkis G, Ofir R, Landau D et al (2007a) Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKI gamma of the phophatidylinsitol pathway. Am J Hum Genet 81:530–539CrossRefPubMedCentralGoogle Scholar
  27. Narkis G, Ofir R, Manor E et al (2007b) Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am J Hum Genet 81:589–595CrossRefPubMedCentralGoogle Scholar
  28. Nishiguchi KM, Avila-Fernandez A, van Huet RA et al (2014) Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology 121:1620–1627CrossRefGoogle Scholar
  29. Paisan-Ruiz C, Bhatia KP, Li A et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65:19–23CrossRefGoogle Scholar
  30. Pettazzoni M, Froissart R, Pagan C et al (2017) LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: a novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease. PLoS One 12:e0181700CrossRefPubMedCentralGoogle Scholar
  31. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8:743–754CrossRefGoogle Scholar
  32. Rohrbough J, Broadie K (2005) Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6:139–150CrossRefGoogle Scholar
  33. Rotthier A, Auer-Grumbach M, Janssens K et al (2010) Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet 87:513–522CrossRefPubMedCentralGoogle Scholar
  34. Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ et al (2012) Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91:1073–1081CrossRefPubMedCentralGoogle Scholar
  35. Seyer A, Boudah S, Broudin S et al (2016) Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow. Metabolomics 12:91–104CrossRefPubMedCentralGoogle Scholar
  36. Simpson MA, Cross H, Proukakis C et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229CrossRefGoogle Scholar
  37. Sousa SB, Jenkins D, Chanudet E et al (2014) Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet 46:70–76CrossRefGoogle Scholar
  38. Sumi-Akamaru H, Beck G, Kato S et al (2015) Neuroaxonal dystrophy in PLA2G6 knockout mice. Neuropathology 35:289–302CrossRefGoogle Scholar
  39. Synofzik M, Gonzalez MA, Lourenco CM et al (2014) PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 137:69–77CrossRefGoogle Scholar
  40. Tesson C, Nawara M, Salih MA et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064CrossRefPubMedCentralGoogle Scholar
  41. Thiele C, Hannah MJ, Fahrenholz F et al (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49CrossRefGoogle Scholar
  42. Tu-Sekine B, Goldschmidt H, Raben DM (2015) Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling. Adv Biol Regul 57:147–152CrossRefGoogle Scholar
  43. Ueda Y (2014) The role of phosphoinositides in synapse function. Mol Neurobiol 50:821–838CrossRefGoogle Scholar
  44. Wierda KD, Toonen RF, de Wit H et al (2007) Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54:275–290CrossRefGoogle Scholar
  45. Williams D, Vicôgne J, Zaitseva I et al (2009) Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane. Mol Biol Cell 20:4910–4919CrossRefPubMedCentralGoogle Scholar
  46. Wortmann SB, Vaz FM, Gardeitchik T et al (2012) Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 44:797–802CrossRefGoogle Scholar
  47. Zeharia A, Shaag A, Houtkooper RH et al (2008) Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am J Hum Genet 83:489–494CrossRefPubMedCentralGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  1. 1.Sorbonne Université, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, F-75013ParisFrance
  2. 2.Sorbonne Université, GRC no. 13, NeurométabolismeParisFrance
  3. 3.Department of Genetics and Reference Centre for Adult Neurometabolic Diseases, AP-HPLa Pitié-Salpêtriere University HospitalParisFrance

Personalised recommendations